

UNIVERSIDAD ESTATAL PENÍNSULA DE SANTA ELENA FACULTAD DE CIENCIAS DE LA INGENIERÍA CARRERA INGENIERÍA EN PETRÓLEOS

TEMA:

"EVALUACIÓN DEL FACTOR DE RECOBRO EN LA FASE DE DESPLAZAMIENTO Y ALMACENAMIENTO DE CO₂ EN UN YACIMIENTO DEL CAMPO SHUSHUFINDI-BLOQUE 57"

TRABAJO DE INTEGRACIÓN CURRICULAR

AUTORES: CARLOS DANIEL QUIRUMBAY POZO DOUGLAS EDUARDO TOMALÁ SUÁREZ

TUTOR: ING. MARLLELIS DEL VALLE GUTIÉRREZ HINESTROZA, PhD.

LA LIBERTAD, ECUADOR

2023

UNIVERSIDAD ESTATAL PENÍNSULA DE SANTA ELENA

FACULTAD DE CIENCIAS DE LA INGENIERÍA CARR<mark>ERA DE INGENIERÍA EN PETRÓ</mark>LEOS

TEMA:

"EVALUACIÓN DEL FACTOR DE RECOBRO EN LA FASE DE DESPLAZAMIENTO Y ALMACENAMIENTO DE CO2 EN UN YACIMIENTO DEL CAMPO SHUSHUFINDI-BLOQUE 57"

TRABAJO DE INTEGRACIÓN CURRICULAR

AUTORES: CARLOS DANIEL QUIRUMBAY POZO DOUGLAS EDUARDO TOMALÁ SUÁREZ

TUTOR:

ING. MARLLELIS DEL VALLE GUTIÉRREZ HINESTROZA, PhD.

LA LIBERTAD – ECUADOR

2023

TRIBUNAL DE SUSTENTACIÓN

ING. CARLOS PORTILLA, MSc. DIRECTOR DE CARRERA DELEGADO

ING. MARLLELIS GUTIERREZ, PhD. DOCENTE TUTOR

ING. SADI ITURRALDE KURE, MSc. DOCENTE ESPECIALISTA

ING. CARLOS MALAVÉ, MSc. DOCENTE GUIA DE LA UIC

David Vepa 6.

ING. DAVID VEGA GONZÁLEZ SECRETARIO DEL TRIBUNAL

DEDICATORIA

Esta tesis se la dedico a mis padres Rubén Quirumbay y Jessenia Pozo, quienes han sido mi inspiración a lo largo de mi etapa de formación académica. Por brindarme su amor y apoyo incondicional en todo momento lo que me ha llevado a alcanzar este logro importante en mi vida.

Carlos Quirumbay.

Dedico este trabajo con mucho cariño a mis padres, Eduardo Tomalá y Jessica Suárez, quienes con su incansable esfuerzo diario, me brindan la valiosa oportunidad de continuar mi formación profesional. Son mi mayor inspiración y un ejemplo imborrable de perseverancia y superación.

A mis hermanos, por estar siempre a mi lado apoyándome. Y a mi abuela Elsa González, mi ángel del cielo, quien desde allá arriba siempre me ha cuidado y protegido. Con amor,

Douglas Tomalá.

CERTIFICADO DE ANTIPLAGIO

En calidad de tutor del trabajo de investigación para titulación del tema EVALUACIÓN DEL FACTOR DE RECOBRO EN LA FASE DE DESPLAZAMIENTO Y ALMACENAMIENTO DE CO₂ EN UN YACIMIENTO DEL CAMPO SHUSHUFINDI-BLOQUE 57, elaborado por los estudiantes CARLOS DANIEL QUIRUMBAY POZO y DOUGLAS EDUARDO TOMALÁ SUÁREZ, egresados de la carrera de Ingeniería en Petróleos, de la Facultad de Ciencias de la Ingeniería, me permito declarar que una vez analizado en el sistema antiplagio COMPILATIO, luego de haber cumplido con los requerimientos exigidos de valoración, la presente tesis, se encuentra con un 0% de la valoración permitida.

Ing. Marllelis Gutiérrez, PhD.

C.I.: 096102768-7

DECLARACIÓN DE AUTORÍA

Nosotros, **Carlos Daniel Quirumbay Pozo** y **Douglas Eduardo Tomalá Suárez**, declaramos bajo juramento que el presente trabajo de titulación denominado **"EVALUACIÓN DEL FACTOR DE RECOBRO EN LA FASE DE DESPLAZAMIENTO Y ALMACENAMIENTO DE CO₂ EN UN YACIMIENTO DEL CAMPO SHUSHUFINDI-BLOQUE 57"**, no tiene antecedentes de haber sido elaborado en la Facultad de Ciencias de la Ingeniería, Carrera de Ingeniería en Petróleos, lo cual es un trabajo exclusivamente inédito y perteneciente de nuestra autoría.

Por medio de la presente declaración cedemos los derechos de autoría y propiedad intelectual, correspondientes a este trabajo, a la Universidad Estatal Península de Santa Elena, según lo establecido por la ley de propiedad intelectual, por su reglamento y por la normativa institucional vigente.

Atentamente,

Carlos Quitumbau

CARLOS QUIRUMBAY POZO Autor de Tesis C.I. 092901263-1

DOUGLAS TOMALÁ SUÁREZ Autor de Tesis C.I. 240034597-7

CERTIFICACIÓN DEL TUTOR

Ing. Marllelis Gutiérrez Hinestroza, PhD.

TUTORA DE PROYECTO DE INVESTIGACIÓN

Universidad Estatal Península de Santa Elena

En mi calidad de Tutora del presente trabajo **EVALUACIÓN DEL FACTOR DE RECOBRO EN LA FASE DE DESPLAZAMIENTO Y ALMACENAMIENTO DE CO2 EN UN YACIMIENTO DEL CAMPO SHUSHUFINDI-BLOQUE 57** previo a la obtención del Título de Ingeniero en Petróleos elaborado por los señores: Carlos Daniel Quirumbay Pozo y Douglas Eduardo Tomalá Suárez, egresados de la carrera de Petróleos, Facultad Ciencias de la Ingeniería de la Universidad Estatal Península de Santa Elena, me permito declarar que luego de haber orientado, estudiado y revisado, la apruebo en todas sus partes.

ING. MARLLELIS GUTIERREZ H., PhD. TUTORA

CERTIFICADO DE GRAMATOLOGÍA

Lcdo. Dennys Mauricio Panchana Yagual, Mgtr. Celular: 0939211033 Correo: <u>dennys.panchana@educacion.gob.ec</u>

CERTIFICACIÓN GRAMATICAL Y ORTOGRÁFICA

Yo, *DENNYS MAURICIO PANCHANA YAGUAL*, en mi calidad de *LICENCIADO EN CIENCIAS DE LA EDUCACIÓN Y MAGÍSTER EN ADMINISTRACIÓN Y LIDERAZGO EDUCACIONAL*, por medio de la presente tengo a bien indicar que he leído y corregido el trabajo de integración curricular previo a la obtención del título de ingeniero en petróleos, denominado "EVALUACIÓN DEL FACTOR DE RECOBRO EN LA FASE DE DESPLAZAMIENTO Y ALMACENAMIENTO CO₂ EN UN YACIMIENTO DEL CAMPO SHUSHUFINDI-BLOQUE 57." de los estudiantes: CARLOS DANIEL QUIRUMABY POZO y DOUGLAS EDUARDO TOMALÁ SUAREZ.

Certifico que está redactado con el correcto manejo del lenguaje, claridad en las expresiones, coherencia en los conceptos e interpretaciones, adecuado empleo en la sinonimia. Además de haber sido escrito de acuerdo a las normas de ortografía y sintaxis vigentes.

Es cuanto puedo decir en honor a la verdad y autorizo a los interesados hacer uso del presente como estime conveniente.

Santa Elena, 15 de julio del 2023

Lcdo. Dennys Panchana Yagual, Mgtr.

CI. 0919400176 LICENCIADO EN CIENCIAS DE LA EDUCACIÓN MAGISTER EN GERENCIA Y LIDERAZGO EDUCACIONAL Nº DE REGISTRO DE SENECYT 1031-2018-1947613

AGRADECIMIENTOS

Agradecemos a Dios por la oportunidad que nos ha brindado para desarrollar y ejecutar este trabajo. A nuestros padres por su bendición, que nos ha guiado al éxito. Al apoyo incondicional de nuestros familiares, amigos y compañeros.

A la Universidad Estatal Península de Santa Elena, a la facultad ciencias de la ingeniería, a la carrera de ingeniería en petróleos y al grupo de docentes, quienes impartieron sus conocimientos, base fundamental de nuestra formación como profesionales.

A nuestra tutora de tesis, la Dra. Marllelis Gutiérrez, por brindarnos la oportunidad de formar parte de su grupo de trabajo, por habernos apoyado incondicionalmente y ser guía en el desarrollo de este trabajo de titulación y al Ing. Sadi Iturralde, por sus recomendaciones y el tiempo que nos dedicó.

CONTENIDO

TRIBUNAL DE SUSTENTACIÓNii
DEDICATORIAiii
CERTIFICADO DE ANTIPLAGIOiv
DECLARACIÓN DE AUTORÍAv
CERTIFICACIÓN DEL TUTORvi
CERTIFICADO DE GRAMATOLOGÍAvii
AGRADECIMIENTOS
CONTENIDOix
LISTA DE FIGURASxiii
LISTA DE TABLAS
ABREVIATURAS
RESUMEN xix
ABSTRACT xx
CAPITULO I: INTRODUCCIÓN 1
1.1 PROBLEMA DE INVESTIGACIÓN 1
1.2 JUSTIFICACIÓN1
1.3 ANTEDECENTES
1.4 HIPÓTESIS

1.5 OBJETIVOS
1.5.1 Objetivo General 4
1.5.2 Objetivos Específicos 4
1.6 ALCANCE
1.7 VARIABLES
1.7.1 Variables Dependientes
1.7.2 Variables Independientes
CAPITULO II: MARCO TEÓRICO 6
2.1 GENERALIDADES DEL CAMPO 6
2.1.1 Descripción geológica del campo7
2.1.2 Estratigrafía del campo
2.2 FUNDAMENTOS DE LA INYECCIÓN DE CO29
2.2.1 Estudio preliminar de la inyección de CO ₂ 10
2.2.2 Inundación miscible de CO ₂ 12
2.2.3 Inundación inmiscible de CO ₂ 12
2.2.4 Ventajas y desventajas de la inyección de CO ₂ 13
2.2.5 Métodos de inyección de CO ₂ 14
2.2.6 Inyección de CO ₂ en reservorios convencionales16
2.2.7 Mecanismos de selección para cada método
2.3 CAPTURA Y ALMACENAMIENTO DE CO ₂ 19
2.3.1 Capacidad de almacenamiento del CO ₂
CAPITULO III: METODOLOGÍA

3.1 DISEÑO DE LA INVESTIGACIÓN	
3.2 MÉTODO DE LA INVESTIGACIÓN	21
3.3 POBLACIÓN	
3.4 TAMAÑO DE LA MUESTRA	
3.5 RECOPILACIÓN DE INFORMACIÓN Y PROCESAMIENTO	
3.6 INYECCIÓN DE CO2 AL CAMPO SHUSHUFINDI	25
3.6.1 Evaluación de la inyección y secuestro de CO ₂ .	25
3.6.2 Modelamiento estático de la arena T inferior	
3.6.3 Caracterización de las propiedades del fluido del reservorio	
3.6.4 Modelamiento dinámico de la arena T Inferior	
3.6.5 Construcción de los modelos de recuperación.	
CAPITULO IV: ANÁLISIS Y DISCUSIÓN DE RESULTADOS	53
4.1 TASA DE PRODUCCIÓN DE PETRÓLEO	53
4.1.1 Inyección continua	53
4.1.2 Inyección cíclica.	54
4.1.3 Inyección WAG	55
4.2 COMPORTAMIENTO DE LAS SATURACIONES	56
4.2.1 Inyección continua	56
4.2.2 Inyección cíclica.	57
4.2.3 Inyección WAG	58
4.3 CORTE DE AGUA	60
4.4 PRESIONES	61

4.5 FACTOR DE RECOBRO	
4.6 ALMACENAMIENTO DE CO ₂	63
4.6.1 Inyección continua	63
4.6.2 Inyección cíclica	64
4.6.3 Inyección WAG	65
CAPITULO V: CONCLUSIONES Y RECOMENDACIONES	66
5.1 CONCLUSIONES	66
5.2 RECOMENDACIONES	68
REFERENCIAS BIBLIOGRÁFICAS	69
ANEXO A	74
ANEXO B	

LISTA DE FIGURAS

Figura 1. Ubicación geográfica del Campo Shushufindi -Bloque 57 6
Figura 2. Mapa estructural de la Arenisca T del campo Shushufindi, (Morillo, 2019)7
Figura 3. Columna estratigráfica del campo Shushufindi, (Morillo, 2019)
Figura 4. Esquema del método de inyección cíclica de gas, (Noruzi & Sharifi, 2023). 15
Figura 5. Métodos de inundación de gas alternando agua, (Ameli et al., 2023) 16
Figura 6. Comportamiento típico del yacimiento convencional bajo inyección cíclica de CO ₂ , (Noruzi & Sharifi, 2023)
Figura 7. Diagrama de captura y almacenamiento de carbono, adaptado de (Sonke et al., 2022)
Figura8.ProcedimientosdelainyeccióndeCO2.Fuente: Autores.24
Figura 9. Importación del mapa de contornos a GMSH (GMSH, 2022)
Figura 10. Historial de los puntos generados en GMSH (GMSH, 2022)27
Figura 11. Archivos de extensión "*bna" requeridos para el software (GMSH, 2022).27
Figura 12. Ingreso de los componentes a WinProp (CMG, 2015)
Figura 13. Fracciones molares del fluido de la arena T inferior (CMG, 2015)29
Figura 14. Regresión para la presión de saturación (CMG, 2015)
Figura 15. Agrupamiento de componentes (CMG, 2015)
Figura 16. Prueba de la expansión constante de la composición (CMG, 2015)
Figura 17. Cálculo de laboratorio de Liberación diferencial (CMG, 2015)

Figura	18. Cálculo de la hinchazón del CO ₂ (CMG, 2015)	33
Figura	19. Estimación del diagrama de fases del reservorio T inferior (CMG, 2015)	33
Figura	20. Exportación del modelo de WinProp para GEM (CMG, 2015)	34
Figura	21. Ventana de inicialización de Builder de CMG (CMG, 2015)	35
Figura	22. Carga del mapa de contorno del yacimiento (CMG, 2015)	35
Figura	23. Ventana del diseño para el mallado del reservorio (CMG, 2015)	36
Figura	24. Mapa de contornos con malla Orthogonal Corner Point (CMG, 2015)	37
Figura	25. Ventana de ingreso de las propiedades de la roca (CMG, 2015)	38
Figura	26. Ingreso de la compresibilidad de la roca (CMG, 2015)	39
Figura	27. Selección del archivo ". gem" creado en WinProp (CMG, 2015)	39
Figura	28. Ingreso de las propiedades del agua (CMG, 2015)	40
Figura (CMG,	29. Ingreso de la tabla de permeabilidades relativas del sistema agua-petró 2015).	leo 41
Figura (CMG,	30. Ingreso de la tabla de permeabilidades relativas del sistema gas-petró 2015).	leo 42
Figura (CMG,	31. Ingreso del método de cálculo de las condiciones iniciales del yacimien 2015).	nto 43
Figura	32. Ingreso de los parámetros iniciales del yacimiento (CMG, 2015)	43
Figura	33. Ventana de creación de los pozos (CMG, 2015).	44
Figura	34. Ventana de creación del pozo inyector de agua (CMG, 2015).	45
Figura	35. Ventana de selección de fechas para la simulación (CMG, 2015)	46
Figura	36. Ventana de fechas correspondientes a la simulación (CMG, 2015)	46
Figura	37. Malla del yacimiento en dirección IJ- 2D areal (CMG, 2015)	47

Figura 38. Malla del yacimiento con 7 pozos productores y un pozo inyector de agua
(CINIO, 2015).
Figura 39. Ventana de creación del pozo inyector de agua (CMG, 2015)
Figura 40. Ventana de ingreso de las fracciones molares de los componentes a inyectar
(CMG, 2015)
Figura 41. Malla del yacimiento con 7 pozos productores, un pozo inyector de agua y 2
pozos inyectores de CO ₂ (CMG, 2015)
Figura 42. Producción de petróleo por el método de inyección continua de CO ₂ (CMG,
2015)
Figura 43. Producción de petróleo por el método de inyección cíclica de CO ₂ (CMG,
2015)
Figura 44. Producción de petróleo por el método de inyección WAG (CMG, 2015)55
Figura 45. Saturaciones promedio de la inyección continua (CMG, 2015) 56
Figura 46. Saturaciones promedio de la inyección cíclica (CMG, 2015) 57
Figura 47. Saturaciones promedio de la inyección WAG (CMG, 2015) 58
Figura 48. Producción de agua de los métodos de inyección (CMG, 2015)60
Figura 49. Presiones de agua de los métodos de inyección (CMG, 2015) 61
Figura 50. Factores de recobro de los tres métodos (CMG, 2015)
Figura 51. Almacenamiento de CO ₂ de la inyección continua (CMG, 2015)63
Figura 52. Almacenamiento de CO ₂ de la inyección cíclica (CMG, 2015) 64
Figura 53. Almacenamiento de CO ₂ de la inyección WAG (CMG, 2015) 65
Figura 54. GOR de la prueba de liberación diferencial (CMG, 2015)74
Figura 55. Viscosidades de la arena T inferior (CMG, 2015)75
Figura 56. Presión de saturación de la inyección de CO ₂ (CMG, 2015)

Figura 57. Diagrama de fases de la arena T inferior (CMG, 2015)
Figura 58. Línea de tiempo de los eventos del método de producción mediante el flujo natural (CMG, 2015). 78
Figura 59. Línea de tiempo de los eventos del método de producción mediante inyección continua de CO ₂ (CMG, 2015)
Figura 60. Línea de tiempo de los eventos del método de producción mediante inyección cíclica de CO ₂ (CMG, 2015)
Figura 61. Línea de tiempo de los eventos del método de producción mediante inyección alternada de agua y gas (WAG) (CMG, 2015)

LISTA DE TABLAS

Pág.

Tabla 1. Datos de reservorio del campo Shushufindi. 8
Tabla 2. Ventajas y desventajas de inyección de CO2
Tabla 3. Criterios de selección según las propiedades del yacimiento, (Ameli et al., 2023).
Tabla 4. Criterios de selección para proyectos WAG, (Khoshsima et al., 2023). 19
Tabla 5. Selección de parámetros para proyectos de inyección cíclica, (Hasanzadeh etal., 2023).19
Tabla 6. Porosidades y permeabilidades de las capas del yacimiento. (EPPetroecuador,2022)
Tabla 7. Permeabilidades relativas del sistema agua-petróleo. (EP Petroecuador,2022).
Tabla 8. Permeabilidades relativas del sistema gas-petróleo. (EP Petroecuador,2022).41
Tabla 9. Ubicación de los pozos en la malla. 45
Tabla 10. Ubicación de los pozos inyectores de CO2 en la malla. 49
Tabla 11. Programa de inyección durante los 20 años del estudio
Tabla 12. Condiciones operacionales del proceso de inyección WAG. 52
Tabla 13. Picos de producción de CO2. 54

ABREVIATURAS

OOIP	Petróleo original in situ.		
VP	Volumen poroso.		
BPD	Barriles por día.		
MMP	Presión mínima de miscibilidad.		
CMG	Computer Modelling Group LTD.		
WAG	Inyección alternada de agua y gas.		
BHP	Presión de fondo de pozo.		
GMSH	Software de contorno.		
API	Gravedad API o grados API, del Instituto Americano de Petróleo.		
GEM	Simulador composicional.		
TAP	Tratamiento de agua producida.		
PVT	Presión – Volumen – Temperatura.		
EOR	Recuperación mejorada del petróleo.		
STL	Tasa de líquido superficial.		
STG	Tasa de gas superficial.		
BSW	Contenido de Sedimento básico y agua.		
STW	Tasa de agua superficial.		
CPOR	Dependencia de presión de la porosidad de la formación.		
PRPOPR	Presión referencial para calcular el efecto de la compresibilidad de la roca.		
TRPOR	Temperatura referencial para calcular el efecto de la compresibilidad de la		
roca.			

ioca.

"EVALUACIÓN DEL FACTOR DE RECOBRO EN LA FASE DE DESPLAZAMIENTO Y ALMACENAMIENTO DE CO₂ EN UN YACIMIENTO DEL CAMPO SHUSHUFINDI-BLOQUE 57"

Autores: Carlos Daniel Quirumbay Pozo Douglas Eduardo Tomalá Suárez Tutor: Marllelis Gutiérrez H.

RESUMEN

Los reservorios apropiados para el almacenamiento de CO_2 involucra la evaluación del factor de recobro y almacenamiento de CO_2 a través de diversas metodologías como simulaciones de inyección continua, cíclica y WAG de CO_2 . Este trabajo de investigación evaluó el factor de recobro en la fase de desplazamiento y almacenamiento de CO_2 mediante simulación numérica basados en datos de yacimientos del campo Shushufindi. La metodología utilizada consta de una recopilación de información del campo; creación del modelo estático del reservorio; definición de las propiedades PVT en el componente WinProp de CMG; construcción del modelo dinámico en GEM-CMG; evaluación de diferentes escenarios de inyección de CO_2 y análisis del comportamiento del factor de recobro del método de inyección continua es de 32%, inyección cíclica es de 31.5% y con la inyección WAG se alcanzó el 37%; de este modo, se logró comprobar que el método más eficiente es el WAG para la arena T inferior. Este estudio concluye que el comportamiento de la curva de saturación de petróleo en cada uno de los métodos tiene una tendencia decreciente debido a la eficiente producción de crudo.

PALABRAS CLAVE: FACTOR DE RECOBRO / ALMACENAMIENTO DE CO₂ / CMG / WINPROP / SHUSHUFINDI.

"EVALUATION OF THE RECOVERY FACTOR IN THE CO₂ DISPLACEMENT AND STORAGE PHASE IN A RESERVOIR IN THE SHUSHUFINDI-BLOCK 57 FIELD"

Authors: Carlos Daniel Quirumbay Pozo Douglas Eduardo Tomalá Suárez Tutor: Marllelis Gutiérrez H.

ABSTRACT

Appropriate reservoirs for CO_2 storage involve the evaluation of the recovery factor and CO_2 storage through various methodologies such as continuous, cyclic and WAG CO_2 injection simulations. This research work evaluated the recovery factor in the CO_2 displacement and storage phase through numerical simulation based on reservoir data from the Shushufindi field. The methodology used consists of a collection of field information; creation of the static model of the reservoir; definition of the PVT properties in the WinProp component of CMG; construction of the dynamic model in GEM-CMG; evaluation of different CO_2 injection scenarios and analysis of the recovery factor behavior for the optimal scenario over time. The results indicate that the recovery factor of the continuous injection method is 32%, cyclic injection is 31.5% and with WAG injection it reached 37%; thus, it was possible to prove that the most efficient method is WAG for the lower T sand. This study concludes that the behavior of the oil saturation curve in each of the methods has a decreasing trend due to the efficient production of crude oil.

KEYWORDS: RECOVERY FACTOR / CO₂ STORAGE / CMG / WINPROP / SHUSHUFINDI.

CAPITULO I: INTRODUCCIÓN

1.1 PROBLEMA DE INVESTIGACIÓN

El almacenamiento de CO_2 en formaciones geológicas del subsuelo utiliza las mismas técnicas y tecnologías desarrolladas para la industria de extracción de petróleo y gas, con factibilidad dependiendo de las condiciones geológicas, su potencial de almacenamiento y la rentabilidad del proyecto (Metz et al., 2005).

En Ecuador la producción de petróleo constituye una de las principales fuentes económicas. Sin embargo, después de varios años de producción, la energía de algunos campos del Oriente Ecuatoriano ha declinado. Un claro ejemplo es el campo Shushufindi que forma parte del bloque 57, para la recuperación de esta energía es posible realizar varios métodos de recuperación mejorada (EOR), como es el caso de la inyección de CO_2 con el objetivo de mantener la presión aumentando el factor de recobro e incrementando consecuentemente las reservas recuperables. En este contexto es prudente evaluar el potencial de almacenamiento de CO_2 y el factor de recobro en los yacimientos con declinación de producción.

1.2 JUSTIFICACIÓN

La evaluación de la razón de movilidad, el factor de recobro y almacenamiento de CO_2 en campos del Oriente Ecuatoriano permitirá una selección adecuada y efectiva de yacimientos candidatos para la aplicación de técnicas EOR y almacenamiento de CO_2 . Este almacenamiento contribuye a la mitigación de impactos ocasionados por el cambio climático.

La simulación numérica aplicada al Campo Shushufindi-Bloque 57, con la inyección de CO₂, permitirá evaluar la eficiencia de los métodos para obtener mayor producción e incrementar el factor de recobro. Por lo tanto, se aprovechará el gas asociado que se quema en los mecheros del campo, lo cual ocasiona enfermedades crónicas en los habitantes del sector. El uso del software CMG, es necesario por las siguientes características principales: definición del modelo estático y dinámico del reservorio en estudio y los procesos posteriores, como la recuperación mejorada de petróleo, para

obtener una simulación precisa de desplazamiento miscible/inmiscible y la captura y almacenamiento de CO₂, para obtener los efectos a largo plazo de la inyección y determinar la viabilidad del proyecto.

Finalmente, existe una ventaja económica, debido a que parte de la infraestructura necesaria para el almacenamiento de CO_2 como los pozos de inyección ubicados en el sitio pueden ser utilizados para realizar operaciones de desplazamiento.

1.3 ANTEDECENTES

Syed et al. (2022) construyeron un modelo de simulación numérica mecanicista a través de las propiedades básicas de las rocas y los fluidos de los yacimientos de petróleo de arenas compactas de Estados Unidos para el mejoramiento de recuperación de petróleo. Los resultados muestran que la inyección de CO_2 funciona predominantemente para lograr una recuperación significativa del petróleo. Además, el yacimiento con una composición de fluido in situ más ligera y una mayor presión del yacimiento mejora la recuperación del petróleo debido a la difusividad y solubilidad del CO_2 en el fluido del yacimiento.

Pomar-Castromonte et al. (2021) evaluaron la capacidad de almacenamiento de CO_2 de la formación Pariñas (Perú), a través de modelación analítica basada en ecuaciones de balance de masas y simulación numérica utilizando IMEX CMG. Este estudio evalúa los yacimientos de petróleo agotados que involucran la estimación de la capacidad de almacenamiento de CO_2 con la interacción del CO_2 y el fluido de yacimiento (petróleo y agua). Los resultados presentaron una capacidad de almacenamiento de 35.37 millones de toneladas de CO_2 .

Peck et al. (2018) evaluaron los factores de eficiencia de almacenamiento de CO_2 en las operaciones de recuperación mejorada por CO_2 mediante una base de datos y 12 modelos diferentes de simulación de yacimientos. Los factores de eficiencia de almacenamiento de CO_2 se atribuyeron a la profundidad del yacimiento y su litología. Los resultados de este estudio brindaron información para cuantificar las estimaciones de recursos de almacenamiento de CO_2 en yacimientos de petróleo y la incertidumbre asociada con estas estimaciones.

Otro estudio desarrolló una metodología para producir indicadores claves de rendimiento para la operatividad y eficiencia de un yacimiento de almacenamiento de CO₂. Esta metodología de basa en que las formaciones geológicas individuales y sus características pueden evaluarse sobre la configuración tectónica y el historial más reciente del yacimiento, a través de datos de exploración y desarrollo de hidrocarburos Korre et al. (2013).

Zhao & Liao (2012) propusieron un método de evaluación de almacenamiento de CO_2 que consideró la eficiencia del desplazamiento y barrido de CO_2 , la disolución de CO_2 y algunas propiedades del yacimiento y del fluido. Los parámetros importantes en el método de evaluación de almacenamiento de CO_2 son el coeficiente de almacenamiento y el factor de recobro. Los resultados de la evaluación demostraron que el campo petrolero de Changqing (China) es adecuado para el almacenamiento de CO_2 y el potencial de recuperación mejorada.

Jahangiri & Zhang (2011) analizaron la co-optimización de la extracción del petróleo y la capacidad de almacenamiento de CO_2 para un modelo de yacimiento heterogéneo, tridimensional y sintético. Este estudio utilizó el simulador de composición 3-D ECLIPSE junto a un algoritmo de optimización que evalúa el valor actual neto de la recuperación de petróleo y almacenamiento de CO_2 . Los resultados mostraron el requerimiento de técnicas innovadoras de ingeniería de yacimientos para optimizar el almacenamiento de CO_2 y la recuperación del petróleo.

Bachu et al. (2007) determinaron que la evaluación de almacenamiento de CO_2 se realiza a varias escalas: país, cuenca, regional, local y sitio específico. Esta evaluación es sencilla y se basa en las reservas recuperables, propiedades del yacimiento y características del CO_2 in situ, mediante simulaciones numéricas. La determinación de la capacidad teórica de almacenamiento de CO_2 se basa en los factores de recobro y terminación.

1.4 HIPÓTESIS

¿Es posible incrementar el factor de recobro del Campo Shushufindi- Bloque 57 mediante el método de inyección continua, cíclica y alternada de agua y CO₂?

¿Se puede estimar el porcentaje de CO₂ recuperado, producto de la inyección en superficie?

1.5 OBJETIVOS

1.5.1 Objetivo General.

Evaluar el factor de recobro en la fase de desplazamiento y almacenamiento de CO₂ mediante simulación numérica basados en datos de yacimientos del bloque 57 del Campo Shushufindi.

1.5.2 Objetivos Específicos.

- Caracterizar el modelo geológico del campo Shushufindi con las propiedades de las rocas y estructura del yacimiento mediante el software GMSH.
- Establecer el modelo PVT del campo Shushufindi en el componente WinProp del software CMG.
- Analizar el modelo numérico de simulación basado en las propiedades dinámicas del yacimiento y modelo geológico en el simulador GEM de CMG.
- Determinar las características, tiempos y volúmenes de CO₂ para los métodos de inyección continua, cíclica y alternada con agua.
- Estimar el comportamiento del factor de recobro en la fase de desplazamiento con inyección de CO₂.
- Calcular el porcentaje de almacenamiento y recuperable de CO₂ en el campo Shushufindi- Bloque 57.
- Evaluar el factor de recobro en la fase de desplazamiento y almacenamiento de CO_{2.}

1.6 ALCANCE

Con la simulación numérica aplicada al campo Shushufindi- Bloque 57, se estimará el mejor factor de recobro de los métodos de inyección continua, cíclica e inyección alternada de agua y CO_2 , lo cual actúa en la reducción de la saturación de petróleo residual. Otro aspecto que se considerará es como actuará el método de inyección con relación al tiempo que por general tienden a incrementar la producción.

Además, se estimará el porcentaje CO_2 en el reservorio posterior a la producción, lo cual representará de la capacidad de almacenamiento de las arenas del campo Shushufindi-Bloque 57. Por consiguiente, se obtendrá la cantidad de CO_2 recuperable en superficie de cada método aplicado.

1.7 VARIABLES

1.7.1 Variables Dependientes.

• Estimación de factor de recobro y capacidad de almacenamiento de CO₂.

1.7.2 Variables Independientes.

- Tasa de producción.
- Inyección de CO₂ por pozo.
- Intervalos de producción.
- Presión del yacimiento.
- Producción de petróleo y agua.

CAPITULO II: MARCO TEÓRICO

2.1 GENERALIDADES DEL CAMPO

El Campo Shushufindi - Bloque 57 se encuentra ubicado en la provincia de Sucumbíos, en la cuenca oriente del Ecuador, es parte del Corredor Central Sacha-Shushufindi (Espín & Salas, 2021). Se encuentra a una altitud de 231 metros sobre el nivel del mar, 0° 11' 45'' Sur y 76° 38' 57'' Oeste (Ramos, 2018). Este campo posee la mayor producción de crudo en el Ecuador, con 220 pozos petroleros en operación y cinco estaciones de producción Norte, Central, Sur, Suroeste y Aguarico. El Bloque 57 es responsable de la producción de 90000 bbl de petróleo diarios (Espín & Salas, 2021).

Figura 1. Ubicación geográfica del Campo Shushufindi -Bloque 57.

2.1.1 Descripción geológica del campo.

El Campo Shushufindi – Bloque 57 presenta en su estructura un anticlinal asimétrico alargado con orientación Norte-Sur. Consta de tres estructuras principales, dos anticlinales Shushufindi y una denominada Aguarico. Su flanco oriental se encuentra establecido por fallas de transpresión dextral, que forman parte de una estructura en forma de flor. La falla aproximadamente alcanza un salto de 200 pies (Morillo, 2019). En la base de caliza A la estructura posee una longitud aproximada de 35 km y entre 6 y 7 km de ancho. La figura 2 presenta el mapa estructural de la arenisca T correspondiente a este campo.

Figura 2. Mapa estructural de la Arenisca T del campo Shushufindi, (Morillo, 2019).

2.1.2 Estratigrafía del campo.

La tabla 1 muestra los principales reservorios del campo Shushufindi con mayor potencial hidrocarburífero (Figura 3).

Reservorio	Características	Referencia
	Grano medio a grueso. Minerales	
	semejantes a la arenisca U.	
	Permeabilidad y porosidad	
	superior en la base de la arenisca.	
	Porosidad total intergranular de	
	17% y 38415 acres.	
	Grados API del crudo varía entre	
Arenisca T	28 – 32.	
	Saturación de agua inicial +/- 15%.	
	Permeabilidad absoluta entre 300	
	– 600 mD.	
	Valor de salinidad para este	
	reservorio va entre 15000 a 25000	(Baby et al., 2014; Gaona,
	ppm de cloruro de sodio.	2019; Jami & Ruíz, 2022;
		Sánchez & Sánchez, 2021)
	Arenisca cuarzosa.	
	Presencia de fragmentos líticos.	
	Posee minerales como el circón,	
	muscovita y glauconita.	
	La arcilla predominante es la	
Arenisca U	caolinita.	
	Porosidad total promedio de 19%.	
	Permeabilidad absoluta entre 250	
	y 400 mD.	
Arenisca Basal	Estructura de grano decreciente de	
Tena	menor espesor.	

Tabla 1. Datos de reservorio del campo Shushufindi.

Porosidad promedio alrededor del

15%.

Espesores entre 1-22 pies.

Figura 3. Columna estratigráfica del campo Shushufindi, (Morillo, 2019).

2.2 FUNDAMENTOS DE LA INYECCIÓN DE CO2

El CO₂ se inyecta al yacimiento de petróleo con la finalidad de proveer energía, el CO₂ se disuelve en el petróleo, reduciendo su viscosidad y desplazándose a los pozos productores. Actualmente, la recuperación mejorada de hidrocarburo es la opción económica más viable en proceso de captura y almacenamiento de CO₂, debido a que incrementa la producción y mejora el balance costo / ingreso de estos procesos (Alquicira, 2018).

Según Moghadasi et al. (2018) cuando se realiza la inyección de CO_2 en el yacimiento, surge una interacción física y química de la roca del yacimiento y el fluido de hidrocarburo existente. Estas interacciones explican el mecanismo de recuperación del petróleo remanente. Estos mecanismos se clasifican en:

- Aumento del volumen de petróleo.
- Disminución de la densidad de petróleo y agua.
- Disminución de la viscosidad del petróleo.
- Disminución de tensión interfacial entre roca y fluido.

El CO₂ posee una alta solubilidad en el fluido, debido a esto, el aceite se hincha, reduciendo su viscosidad y densidad. Además, debido a la inundación de agua anterior, casi siempre existe residuos de agua y al inyectar CO₂ se obtiene como resultado una densidad de agua reducida (Hemmati-Sarapardeh et al., 2016).

La importancia de estos mecanismos se relaciona con la presión y temperatura del yacimiento. El proceso miscible se da en altas temperaturas y presiones mientras que el inmiscible a bajas condiciones de presión y temperatura.

2.2.1 Estudio preliminar de la inyección de CO₂.

- Volumen de inyección de gas

De acuerdo con Vishnyakov et al. (2020), el cálculo del volumen de gas inyectado se realiza teniendo en cuenta la presión y la temperatura del yacimiento. La tasa de gas inyectado se determina de la siguiente manera:

$$V_{ig} = V_o + V_w + V_g \tag{1}$$

Donde:

 V_{ig} , volumen de gas inyectado a las condiciones del reservorio, $m^3/_d$.

 V_o , tasa de flujo volumétrico del petróleo producido a las condiciones del yacimiento, $m^3/_d$.

 V_w , tasa de flujo volumétrico de agua producida a las condiciones del yacimiento, $m^3/_d$. V_g , tasa de flujo volumétrico de gas producido a las condiciones del yacimiento, $m^3/_d$.

La tasa de flujo de petróleo producido se puede obtener de la siguiente relación:

(**1**)

$$V_{o} = V_{od} B_{o}$$
⁽²⁾

Donde:

 V_{od} , volumen de petróleo después de la desgasificación a condiciones estándares, $m^3/_d$. B_o , Factor volumétrico del petróleo a condiciones del reservorio.

La tasa de flujo de agua producida se puede obtener de:

$$V_{\rm w} = V_{\rm wd} B_{\rm w} \tag{3}$$

Donde:

 V_{wd} , volumen de agua después de la desgasificación a condiciones estándares, $m^3/_d$. B_w , Factor volumétrico del agua a condiciones del reservorio.

- Presión mínima de miscibilidad

La presión de miscibilidad mínima (MMP) de la inyección de CO₂, se calcula de acuerdo con la siguiente fórmula y permite identificar si el bloque de evaluación puede ser fase miscible y se la puede obtener por la siguiente fórmula (León & Samaniego, 2015):

$$MMP = \frac{\left[-329.558 + \left(7.727 * WM * 1.005^{T}\right) - \left(4.377 * MW\right)\right]}{145}$$
(4)

$$MW = \left(\frac{8864.9}{^{\circ}API}\right)^{1/1.012}$$
(5)

$$MW = \left(\frac{12880}{^{\circ}API}\right)^{1/1.012}$$
(6)

$$^{\circ}API = \frac{141.5}{\gamma_0} - 131.5 \tag{7}$$

Donde:

MMP, mínima presión de miscibilidad, MPa.

MW, peso molecular, adimensional.

°API, grado API del crudo.

T, temperatura del reservorio, °F

 γ_0 , gravedad específica del crudo, $\frac{Kg}{m^3}$

2.2.2 Inundación miscible de CO₂.

Una de las condiciones de miscibilidad la determina el nivel de presión mínima que se produce al inyectar CO_2 en el yacimiento de petróleo. El aumento de presión conduce a un incremento en la densidad del CO_2 , que reduce la diferencia de densidad entre el petróleo crudo y el CO_2 . Por lo tanto, la tensión interfacial entre el petróleo crudo y CO_2 se desvanece. A esta presión se la denomina presión mínima de miscibilidad (MMP) (Gao et al., 2013).

La recuperación de petróleo aumenta de igual manera que incrementa la presión y se estabiliza cuando alcanza la MMP. Existen dos tipos de inyección miscible: 1) Miscibilidad de primer contacto: el CO_2 y el petróleo crudo se mezclan en todas las proporciones en el primer contacto formando una mezcla homogénea, y 2) Miscibilidad de contacto múltiple: el CO_2 y el petróleo crudo no son miscibles en el primer contacto. La miscibilidad se origina dinámicamente en múltiples contactos dentro del yacimiento. La composición de las soluciones cambia a través de una transferencia de masa entre CO_2 y petróleo crudo.

2.2.3 Inundación inmiscible de CO₂.

En un proceso de inundación inmiscible, el gas de inyección no se mezcla con el petróleo del yacimiento, pero se disuelve parcialmente en la fase de petróleo, lo que provoca que el petróleo crudo se hinche y disminuya su viscosidad. Existen tres mecanismos para determinar el rendimiento de inyección inmiscible:

- Reducción de la presión interfacial.
- Recuperación de purga.
- Incremento de inyectividad.

Estos mecanismos son considerados efectos composicionales y aumentan la recuperación del petróleo cuando mejoran la movilidad del fluido, Además, estos mecanismos contribuyen para que el petróleo fluya fácilmente, a pesar de que la inyección de gas

inmiscible tiene un factor de recuperación más bajo que la inyección miscible en los mismos escenarios operativos.

2.2.4 Ventajas y desventajas de la inyección de CO₂.

La Tabla 2 muestra las ventajas y desventajas de la inyección de CO₂.

Ventajas	Referencia
Mejora la recuperación del petróleo en yacimientos de baja permeabilidad, debido a una mejor difusión del gas	(Yu et al., 2015)
Uso de compuestos aditivos como polímeros aumentan la densidad, viscosidad del CO ₂ y control de su movilidad a	(L. Wang et al., 2017)
través del yacimiento.	
La captura de CO ₂ de diferentes fuentes para la recuperación	(Guo et al., 2020; Yáñez
de petróleo, reduce su emisión a la atmósfera.	et al., 2020)
Reducción de costos operativos.	(Abdulla & Pokharel, 2022)

Tabla 2. Ventajas y desventajas de inyección de CO₂.

Desventajas	
Generalmente, este método requiere de grandes cantidades de gases y una alta presión para lograr la miscibilidad con el fluido.	(Junior et al., 2023)
Formación de corrosión. Barrido deficiente debido a la digitación viscosa.	
Penetración temprana en el área de barrido. Control deficiente de movilidad debido a la baja viscosidad.	(Massarweh & Abushaikha, 2022)
Precipitación de asfaltenos, reduce la humectabilidad del agua y la permeabilidad del yacimiento.	(Shen & Sheng, 2018; Q. Wang et al., 2021)

2.2.5 Métodos de inyección de CO₂.

- Inyección continua.

En este método, el CO_2 se inyecta de forma continua hasta que la relación gas producidopetróleo alcance valores tan altos que el proyecto no tenga viabilidad financiera (Santamaría, 2018). El proceso multicontacto, los mecanismos de condensación y combinación son utilizados para generar miscibilidad entre el gas y el petróleo (Safaei et al., 2023).

- Inyección cíclica.

En este método, el gas se inyecta de una manera cíclica (Ameli et al., 2023). Este método se aplica a crudos pesados, aunque se ha implementado de forma mayoritaria en yacimientos de aceite ligero y mediano. Cuando existen pozos que se cierran debido al volumen de gas inyectado, se disuelve el volumen máximo de CO_2 en el petróleo para producirlo por expansión a través del CO_2 disuelto (Noruzi & Sharifi, 2023; Santamaría, 2018). Este método se compone de las siguientes etapas:

- Inyección de gas
- Cierre del pozo
- Etapa de producción

Entre las principales ventajas de este método se tienen las siguientes:

- Se basa en las propiedades del fluido.
- Incremento de producción de aceite.

La figura 4 muestra el proceso de inyección cíclica, considerando tres periodos principales, inyección de gas en el yacimiento, periodo de remojo y producción.

Figura 4. Esquema del método de inyección cíclica de gas, (Noruzi & Sharifi, 2023).

- Inyección WAG

La inyección WAG es un método que se aplica casi en todos los procesos de inyección de gas, previene la formación de canalizaciones del CO₂ mediante la fase aceite, aumentando la eficiencia del desplazamiento macroscópica (Santamaría, 2018). La figura 5 muestra varias técnicas de inyección de gas, el volumen total de gas a inyectar y la relación agua, gas y frecuencia, cada una de estas deben ser calculadas para el proceso WAG.

Figura 5. Métodos de inundación de gas alternando agua, (Ameli et al., 2023).

Además, la inyección WAG es controlado por:

- Relación del volumen de CO₂ inyectado sobre el volumen de agua inyectada.
- Tamaño del bache.
- Número de bache.
- Ventajas de la inyección WAG.
- Reducir la permeabilidad relativa al CO₂ y por ende su movilidad.
- Cubre el requerimiento de CO₂ en cada instancia.

2.2.6 Inyección de CO₂ en reservorios convencionales.

Los mecanismos para inyección de gas cíclica en yacimientos convencionales son: el hinchamiento de petróleo, la reducción de la viscosidad, represurización del yacimiento y la histéresis de permeabilidad relativa (Noruzi & Sharifi, 2023). La figura 6, muestra el

comportamiento del yacimiento bajo el proceso de hinchamiento, las dos zonas principales en la etapa de producción en yacimientos convencionales bajo inyección de CO_2 son: Zona 1, respuesta rápida del fluido del yacimiento al gas inyectado. La presión se acumula debido al gas inyectado, lo que estimula el flujo del petróleo y aumenta la presión del yacimiento. Zona 2, la caída del flujo de producción ocurre después de la tasa más alta y se refleja una clara disminución de la tasa de producción.

Figura 6. Comportamiento típico del yacimiento convencional bajo inyección cíclica de CO₂, (Noruzi & Sharifi, 2023).

2.2.7 Mecanismos de selección para cada método.

Los criterios de selección para los métodos de inyección de CO₂, no solo se determinan con una o dos características del yacimiento, más bien se determina el mejor enfoque en función de viscosidad, permeabilidad, API, temperatura del yacimiento y profundidad del yacimiento (Ameli et al., 2023). Los objetivos principales del procedimiento de selección son:

- 1. Clasificar de reservorios candidatos.
- 2. Determinar fluidos de inyección idóneos.
- 3. Definir campos analógicos.

4. Establecer reservorios candidatos para estudios extensos.

Además, se consideran los gastos operativos, tecnología y de inversión (Hasanzadeh et al., 2023). Las consideraciones más comunes para la selección de los métodos de inyección son:

- 1. Saturación del petróleo residual en la inyección de agua.
- 2. Temperatura y presión media del yacimiento.
- 3. Presión y viscosidad mínima del petróleo para la miscibilidad.
- 4. Disponibilidad de gas miscible.
- 5. Heterogeneidad del yacimiento.
- 6. Permeabilidad del yacimiento y capacidad de inyección.
- 7. Flujo de fluidos y geometría del yacimiento.

La tabla 3 muestra los parámetros a considerar según las características del yacimiento.

Propiedad	Característica				
	Pozos más profundos implican mayores gastos de				
Profundidad dal vacimiento	perforación y gastos operativos, debido a que la				
Florundidad del yachinento	temperatura del yacimiento aumenta según la				
	profundidad.				
	Temperatura crítica del CO ₂ es de 31°C, donde el				
Tomporatura	CO2 opera como vapor bajo estas condiciones. A				
Temperatura	temperaturas por encima de este nivel, la densidad				
	del CO ₂ sube con la presión.				
Dresión	Se puede alcanzar varios grados de miscibilidad a				
Treston	presión intermedia y alta.				
	Algunos yacimientos tienen diversos niveles de				
Porosidad y permeabilidad	porosidad y comúnmente oscilan entre el 11% y				
	30%.				

Tabla 3. Criterios de selección según las propiedades del yacimiento, (Ameli et al., 2023).

La tabla 4 y 5 presentan los estándares de selección adecuados para proyectos de inyección WAG y cíclica respectivamente.

	Parámetros	Valores
	Espesor (ft)	<100
	Temperatura (°F)	-
	Permeabilidad promedio	<100
Vacimiento	(MD)	
Y acimiento	Método de producción	Inyección de agua
	anterior	
	Tipo de formación	-
	Profundidad	-
	API	29-45
Fluido	Viscosidad (cP)	<2
	Relación de viscosidad	9-30

Tabla 4. Criterios de selección para proyectos WAG, (Khoshsima et al., 2023).

Tabla 5. Selección de parámetros para proyectos de inyección cíclica, (Hasanzadeh et al., 2023).

Parámetros	Crudo pesado	Crudo mediano	Crudo liviano
Porosidad	12-32	25-32	13-32
Permeabilidad	250-350	150-388	10-3000
Gravedad	11-14	17-23	23-38
Viscosidad	415-3000	32-46	0.4-8
Espesor	200	36-220	6-60
Profundidad	1150-4125	2600-4200	1200-12870

2.3 CAPTURA Y ALMACENAMIENTO DE CO₂

La captura y almacenamiento de CO_2 es una clave para la mitigación de las emisiones surgidas por el uso de combustibles fósiles a gran escala. Esta estrategia consiste en capturar el CO_2 que surge de los procesos de la industria hidrocarburífera, trata el CO_2 para eliminar impurezas e inyectarlo en un sitio de almacenamiento que garantiza el aislamiento a la atmósfera (Sonke et al., 2022).

La inyección de CO_2 utilizada para recuperación mejorada de petróleo (EOR), es una fuente relativamente limpia y se ha demostrado que existen pocos problemas operativos siempre que el fluido se encuentre puro y el contenido de agua esté controlado (Barker et

al., 2017). Para la captura del CO_2 se dispone de varios procesos como tratamiento con disolventes o cualquier otro material determinado. El gas para el transporte normalmente se comprime a una presión, donde el CO_2 se convierte a una fase líquido-denso (Figura 7).

Figura 7. Diagrama de captura y almacenamiento de carbono, adaptado de (Sonke et al., 2022).

2.3.1 Capacidad de almacenamiento del CO₂.

La capacidad de almacenamiento de CO_2 de un yacimiento se define como el CO_2 que queda en el reservorio al finalizar la operación EOR y cualquier CO_2 adicional que se pueda inyectar después del proyecto de recuperación. Behnoudfar et al. (2018) define a la capacidad de almacenamiento de CO_2 en el yacimiento durante el proceso EOR, a través de la siguiente formula:

$$M_{\rm CO2} = \rho_{\rm CO2 \ res} RF_{\rm BT} \frac{OOIP}{S_{\rm h}}$$
(8)

Donde, la capacidad de almacenamiento de CO₂ se calcula en millones de toneladas (Mt) ρ , es la densidad de CO₂ en el yacimiento (Kg/m³).

RF, factor de recuperación en porcentaje.

OOIP y Sh, contracción del petróleo en 1/factor de volumen de formación de petróleo.

CAPITULO III: METODOLOGÍA

3.1 DISEÑO DE LA INVESTIGACIÓN

De acuerdo a Armijo et al. (2021), el diseño de la presente investigación se fundamenta en la investigación cuantitativa, debido al tipo de datos numéricos medibles que se requieren para la simulación y los resultados a obtener; además, posee las siguientes características:

- Diseño no experimental: desarrollo del estudio sin manipular de manera intencional las variables independientes; por lo tanto, se analizará las consecuencias de las mismas sobre la variable dependiente. También, permite ver el fenómeno tal y como sucede en el contexto normal o natural.
- Transversal o Transaccional: Conoce la influencia de las variables independientes en la variable dependiente, respecto a un tiempo en específico; además, puede estar conformado por un grupo de estudio, que en este caso son los pozos productores e inyectores.
- Descriptiva: debido a los procedimientos que existen para obtener los resultados de una investigación, donde se involucra los conceptos, teorías y datos.

3.2 MÉTODO DE LA INVESTIGACIÓN

La presente investigación pertenece al método hipotético-deductivo, porque se ha establecido la formulación de hipótesis, de acuerdo con principios, leyes, teorías o datos empíricos, que siguiendo las reglas lógicas de la deducción se pueden comprobar la exactitud o veracidad de las hipótesis. Por tal razón, se realiza una derivación de varias afirmaciones que parten de lo general a lo particular. Ya que posibilita avanzar y comprobar nuevas hipótesis en base a la realidad y deducir las conclusiones, para establecer criterios de opinión, posterior a lo que se conoce (López & Ramos, 2021).

3.3 POBLACIÓN

La población es la agregación total de elementos de los que se pueden extraer muestras. Una población es un grupo de personas individuales, objetos, artículos o cualquier otra unidad de la que se toman muestras para medir. Perteneciente a una característica dada, la población es una configuración bien definida de todos los elementos. Se refiere al todo que incluye todas las observaciones o medidas de una característica dada, entre otros. A la población también se le llama universo (Bhayyalal & Kothari, 2022). Esta puede definirse como cualquier grupo de individuos identificable, bien especificado y se pueden clasificar en:

- Población finita: es aquella en la que todos los miembros se pueden contar fácilmente.
- Población infinita: es aquella cuyo tamaño es ilimitado y no se puede contar fácilmente.

En esta investigación, la población es limitada, ya que actualmente existen 52 pozos en la arena T inferior del campo Shushufindi, ubicado en la provincia de Sucumbíos - Ecuador, perteneciente al Bloque 57.

3.4 TAMAÑO DE LA MUESTRA

La muestra seleccionada es una parte representativa de la población y el tipo de muestreo adecuado para la presente investigación pertenece al muestreo por conveniencia; por lo tanto, la selección de las unidades de la población está en función de la fácil disponibilidad y accesibilidad para el investigador (Otzen & Manterola, 2017). Debido a esto, la muestra está conformada por 7 pozos productores y un inyector que pertenecen a la arena T inferior del Campo Shushufindi.

3.5 RECOPILACIÓN DE INFORMACIÓN Y PROCESAMIENTO

La información necesaria para realizar la simulación en las condiciones estáticas y dinámicas es obtenida de diversas fuentes de datos. En cuanto al procesamiento de la información se implementará el simulador GMSH para la creación del mallado y el software CMG para

definir el modelo a condiciones dinámicas y ejecutar los métodos de inyección de CO₂, además, se implementará las secciones de GEM, WinProp y Results. A continuación, se detalla el proceso establecido para llevar a cabo esta investigación:

- Recopilación de la información del campo Shushufindi: Mapas de isópacas, historiales de producción, reservas, cromatografía de los gases para el modelo composicional, propiedades PVT, reporte de muestras de laboratorio (salinidad, BSW, API, viscosidades, entre otros), propiedades del comportamiento del reservorio (presiones, temperaturas, daño de formación, entre otros), pozos de baja productividad con baja gravedad API, datos de los pozos (topes, bases de las arenas e intervalos de perforación de las arenas productoras).
- Creación del modelo estático del reservorio mediante el modelo estructural, estratigráfico, petrofísico, geoestadístico y geomecánica con la implementación del software GMSH, para mallas tridimensionales.
- Definición de las propiedades PVT en el componente WinProp del software CMG para el modelado avanzado de simulación de yacimientos.
- 4. Construcción del modelo dinámico de reservorio en GEM del software CMG en base a las propiedades roca-fluido.
- Evaluar los diferentes escenarios de inyección de CO₂ modificando la ubicación de los pozos inyectores, de acuerdo a las zonas con mayor saturación de hidrocarburo.
- 6. Analizar el comportamiento del factor de recobro para el escenario óptimo en el tiempo.

Figura 8. Procedimientos de la inyección de CO₂. Fuente: Autores.

3.6 INYECCIÓN DE CO2 AL CAMPO SHUSHUFINDI

3.6.1 Evaluación de la inyección y secuestro de CO₂.

- Cálculo del volumen de inyección de CO₂.

El cálculo del volumen se realizó con los datos de producción de los siete pozos productores que existen en la arena T inferior.

$$V_{ig} = V_o + V_w + V_g$$
$$V_{ig} = (4981.33 \text{ bbl}) + (2868.38 \text{ bbl}) + \left[1249.87 \text{ scf}^* \left(\frac{1 \text{ bbl}}{5.615 \text{ scf}}\right)\right]$$
$$V_{ig} = 8072.30 \text{ bbl}$$

- Cálculo de la presión mínima de miscibilidad

Para estimar el peso molecular se utilizó un promedio de los valores de grado API correspondiente a los siete pozos productores.

$$MW = \left(\frac{8864.9}{\circ API}\right)^{1/1.012}$$
$$MW = \left(\frac{8864.9}{30.8}\right)^{1/1.012} = 269.13$$

Posteriormente, se calculó la presión mínima de miscibilidad con la temperatura promedio del reservorio T inferior.

$$MMP = \frac{\left[-329.558 + \left(7.727^*WM^{*}1.005^{T}\right) - \left(4.377^*MW\right)\right]}{145}$$
$$MMP = \frac{\left[-329.558 + \left(7.727^{*}269.13^{*}1.005^{196}\right) - \left(4.377^{*}269.13\right)\right]}{145}$$
$$MMP = 27.72 \text{ MPa}$$

3.6.2 Modelamiento estático de la arena T inferior.

La creación de un modelo estático permite obtener una representación simplificada del yacimiento petrolífero, en el que se ingresan las propiedades geológicas, geofísicas y de ingeniería de yacimientos; con la finalidad de determinar su influencia en las propiedades petrofísicas de las rocas y el comportamiento que tendrán los fluidos al momento de la producción de petróleo.

Para la creación de la unidad geológica se digitaliza una porción de la arena T inferior de acuerdo a la ubicación de los pozos que esta contiene, utilizando el software GMSH. Y para esto se debe contar con un mapa de isópacas del yacimiento a simular.

A continuación de detalla el proceso: Primeramente, se importa la imagen del mapa de contorno a GMSH (Figura 9).

Figura 9. Importación del mapa de contornos a GMSH (GMSH, 2022).

Luego de importar la imagen a GMSH se utiliza la herramienta "points", la cual permite generar valores en un plano cartesiano tanto para "x" como para "y".

De esta manera se van agregando puntos con la finalidad de construir todas las capas inmersas en la arena (Figura 10).

Figura 10. Historial de los puntos generados en GMSH (GMSH, 2022).

Finalmente, se guarda el archivo con el tipo de extensión "*.msh", se exporta los puntos a dos archivos de extensión "*.bna" que serán cargados en el simulador CMG y se adecua los puntos dependiendo de la profundidad de las capas (Figura 11).

CONTORNO 1	T: Bloc de notas	5	 ×	ESPESOR T: B	loc de notas			— C	⊐ ×
Archivo Edición	Formato V	/er Ayuda		Archivo Edición	Formato	Ver Ayuda			
"С",	"9780",	-165	^	"C",	"0",	-165			~
4958.39951	,	10537.48060		4958.39951	,	10537.48060			
4748.56681	,	10509.26780		4748.56681	,	10509.26780			
4536.97081	,	10442.26240		4536.97081	,	10442.26240			
4283.05562	,	10297.67180		4283.05562	,	10297.67180			
4090.85592	,	10119.57851		4090.85592	,	10119.57851			
3946.26532	,	9902.69261		3946.26532	,	9902.69261			
3734.66933	,	9731.65251		3734.66933	,	9731.65251			
3598.89523	,	9431.89152		3598.89523	,	9431.89152			
3567.15583	,	9179.73963		3567.15583	,	9179.73963			
3547.75953	,	8931.11433		3547.75953	,	8931.11433			
3549.52283	,	8751.25773		3549.52283	,	8751.25773			
3593.60533	,	8541.42504	- 1	3593.60533	,	8541.42504			
3725.85283	,	8379.20144		3725.85283	,	8379.20144			
3768.17203	,	8149.97244	- 1	3768.17203	,	8149.97244			
3893.36633	,	7913.69025	- 1	3893.36633	,	7913.69025			
3909.23603	,	7709.14745	- 1	3909.23603	,	7709.14745			
3836.94073	,	7552.21376	- 1	3836.94073	,	7552.21376			
3669.42723	,	7337.09116		3669.42723	,	7337.09116			
3519.54673	,	7215.42346		3519.54673	,	7215.42346			
3318.53054	,	7035.56687		3318.53054	,	7035.56687			
3163.36014	,	6883.92307		3163.36014	,	6883.92307			
2944.71094	,	6691.72337		2944.71094	,	6691.72337			
2858.30925	,	6531.26308		2858.30925	,	6531.26308			
2648.47655	,	6358.45968		2648.47655	,	6358.45968			
2489.77955	,	6171.54988		2489.77955	,	6171.54988			
2325.79266	,	5981.11349		2325.79266	,	5981.11349			
2221.75796	,	5723.67169		2221.75796	,	5723.67169			
2066.58756	,	5545.57839		2066.58756	,	5545.57839			
1929.05016	,	5363.95850		1929.05016	,	5363.95850			
1809.14577	,	5228.18440		1809.14577	,	5228.18440			
1652.21207	,	5106.51670		1652.21207	,	5106.51670			
1551.70397	,	4991.90220		1551.70397	,	4991.90220			
1393.00697	,	4871.99781		1393.00697	,	4871.99781			
1251.94298	,	4734.46041	~	1251.94298	,	4734.46041			
<			>	<					>

Figura 11. Archivos de extensión "*bna" requeridos para el software (GMSH, 2022).

Este mapa tenía dimensiones pequeñas, así que se adaptaron los valores de los puntos multiplicándolos por 5.3745 para obtener dimensiones más cercanas a la realidad, y por 3.28084 para que los resultados sean en "pies" (ft), que es la unidad de campo.

3.6.3 Caracterización de las propiedades del fluido del reservorio.

Para la caracterización de los fluidos del reservorio se implementó el análisis de cromatografía de los fluidos que provienen de la arena T inferior. A continuación, se describe el procedimiento realizado para el presente caso de estudio:

- Ingreso de componentes.

En la Figura 12, se puede observar los 11 componentes que conforman el fluido del reservorio; primero se ingresó la temperatura del reservorio, luego los componentes del CO₂ hasta el FC6. Posteriormente, se sitúa en el último componente y se presiona "Ins Own", donde se debe ingresar el componente C7+ y las características de la gravedad específica $S_g=0.92$ y el peso molecular MW=274 kg/kgmol. Además, se utilizó el modelo "twu" para las correlaciones de las propiedades físicas y críticas, y el modelo de "Lee-Kesler" para la correlación del factor acéntrico. Finalmente, se aplica cambios.

Default Rese											
Default Reservoir Temperature (deg F) 196											
	F										
	No. of c	components: 11	Constar	ant Volume Shift							
Ins Lib	No.	Component	HC	Pc (atm)	Tc (K)	Acentric fact.	Mol. weight	Vol. Shift	V Shift Coel		
	1	CO2	3	72.8	304.2	0.225	44.01	0	0		
Ins Own	2	N2	0	33.5	126.2	0.04	28.013	0	0		
	3	CH4	1	45.4	190.6	0.008	16.043	0	0		
Сору	4	C2H6	1	48.2	305.4	0.098	30.07	0	0		
Paste	5	C3H8	1	41.9	369.8	0.152	44.097	0	0		
Dalata	6	IC4	1	36	408.1	0.176	58.124	0	0		
Delete	7	NC4	1	37.5	425.2	0.193	58.124	0	0		
	8	IC5	1	33.4	460.4	0.227	72.151	0	0		
	9	NC5	1	33.3	469.6	0.251	72.151	0	0		
· · ·	10	FC6	1	32.46	507.5	0.27504	86	0	0		
	11	C7+	1	15.448768858	844.70321735	0.7802513866	274	0	0		
		0/4		15.446700050	644.70321735	0.7602313600	2/4	U	0		
	_										
First Set		~	NOTE: There	are more options to inp	ut values for Vol. Sł	nift, V Shift Coef1, a	and Ref. Henry, Ri	ight mouse click t	their column he:		
	Ins Lib Ins Own Copy Paste Delete	No. of a	No. of components: 11 Ins Lib No. Component Ins Own 2 N2 2 N2 3 CH4 Copy 4 C2H6 Paste 5 C3H8 Delete 7 NC4 8 IC5 9 NC5 10 FC6 11 C7+ First Set V	No. of components: 11 Ins Lib No. Component HC Ins Own 2 N2 0 3 CH4 1 0 4 C2H6 1 5 Paste 6 IC4 1 ● IS C3H8 1 1 7 NC4 1 9 NC5 1 1 10 FC6 1 1 Image: First Set NOTE - There NOTE - There	No. of components: 11 Ins Lib No. Component HC Pc (atm) 1 CO2 3 72.8 2 N2 0 33.5 3 CH4 1 45.4 Copy 4 C2H6 1 48.2 Paste 5 C3H8 1 41.9 6 IC4 1 33.4 9 NC5 1 33.3 V PC6 1 32.46 1 C7+ 1 15.448768858	No. of components: 11 Ins Lib Ins Own No. Component: HC Pc (atm) Tc (K) 2 N2 0 33.5 126.2 3 CH4 1 45.4 190.6 4 C2H6 1 48.2 305.4 5 C3H8 1 41.9 369.8 6 IC4 1 36 408.1 7 NC4 1 37.5 425.2 8 IC5 1 33.3 469.6 10 FC6 1 32.46 507.5 11 C7+ 1 15.448768858 844.70321735	No. of components: 11 Constant Ins Lib Ins Own No. Component HC Pc (atrm) Tc (K) Acentric fact. Ins Own CO2 3 72.8 304.2 0.225 2 N.2 0 33.5 126.2 0.04 3 CH4 1 45.4 190.6 0.008 4 C2H6 1 48.2 305.4 0.098 5 C3H8 1 41.9 369.8 0.152 6 IC4 1 36.408.1 0.176 7 NC4 1 37.5 425.2 0.193 8 IC5 1 33.4 460.4 0.227 9 NC5 1 33.3 469.6 0.251 10 FC6 1 32.46 507.5 0.27504 11 C7+ 1 15.483768858 844.70321735 0.7802513866	No. of components: 11 Constant Volume Shift Ins Lib Ins Own No. Component HC Pc (atm) Tc (K) Acentric fact. Mol. weight. Ins Own 0 0 33.5 126.2 0.04 28.013 Copy 1 0.0 33.5 126.2 0.04 28.013 3 CH4 1 45.4 190.6 0.008 16.043 Copy Paste 6 IC4 1 36.4 408.1 0.176 58.124 Delete IC5 1 33.3 469.6 0.227 72.151 9 NC5 1 33.3 469.6 0.251 72.151 9 NC5 1 33.3 469.6 0.251 72.151 10 FC6 1 32.46 507.5 0.7802513866. 274	No. of components: 11 Constant Volume Shift Ins Lib Ins Own No. Component HC Pc (atm) Tc (K) Acentric fact. Mol. weight. Vol. Shift. Ins Own 0.02 3 72.8 304.2 0.225 44.01 0 2 N.2 0 33.5 126.2 0.04 28.013 0 3 CH4 1 45.4 190.6 0.008 16.043 0 Copy Paste 5 C3H8 1 41.9 369.8 0.152 44.097 0 5 C3H8 1 37.5 425.2 0.193 58.124 0 6 IC4 1 37.5 425.2 0.193 58.124 0 8 IC5 1 33.4 460.4 0.227 7.2151 0 9 NC5 1 33.3 469.6 0.251 72.151 0 10 FC6 1 32.46 507.5		

Figura 12. Ingreso de los componentes a WinProp (CMG, 2015).

- Ingreso de las fracciones molares

En la Figura 13, se puede observar el ingreso de las fracciones molares correspondiente a los fluidos del reservorio, debido a que se va a realizar un proceso de inyección de CO_2 se

colocó la fracción molar en la sección de "Secondary" y las demás fracciones se ingresaron en la sección "Primary", posteriormente, se normalizaron las fracciones y se guarda los cambios.

WP_TINEERIOR.DAT								
- Simulation Data Set	Comments							
Simulation Steps	Enter the composition	n in mole fraction or percent.	Normally, "Primary" corresp	sponds to the reservoir fluid				
Titles/EOS/Units (Tinferior)	and "Secondary" corresponds to the injection fluid (if applicable). Blanks will be replaced by zeros.							
Component Selection/Properties								
Component Composition Plot								
ia- 🔂 Simulation Results	Component	Primary	Secondary					
Event Log	CO2	0	1.867142857					
Simulation Output	N2	0.454285714	0	Normalize				
	CH4	48.91428571	0	Composition				
	C2H6	7.238571429	0					
	C3H8	4.491428571	0					
	IC4	1.647142857	0					
	NC4	2.792857143	0					
	IC5	1.601428571	0					
	NC5	2.228571429	0					
	FC6	4.378571429	0					
	C7+	24.38571429	0					
	Sum	98.132857143	1.867142857					

Figura 13. Fracciones molares del fluido de la arena T inferior (CMG, 2015).

- Regresión de la presión saturación

Este proceso se realiza con la finalidad de ajustar la presión de saturación. Primero se dirige a la sección de composición, luego a caracterización y seleccionar "Start Regression", dentro de esta parte se selecciona "Add Into Reg-Block", "Calculations y se añade "Saturation Pressure". Después, se ingresa la temperatura del reservorio y la presión de saturación, como se detalla en la Figura 14 y se aplica regresión a la presión crítica del componente C7+. Además, se aplican cambios en la parte de componentes y se establece en "Temperature Dependent Volume Shift Correlation" y en la parte de "Int.Coef" seleccionar "HC-HC Groups" para fijar en tipo HC-HC y en la parte de exponente definir el valor de 0, luego de realizar las modificaciones, se regresa a la sección de regresión y se corre la simulación.

	Calculations Feed/K values/Output level/Stability tes	t level		
Simulation Data Set	Comments			
Titlee/EOS/Lipite (Tipferior)		-0-	culation option	
Component Selection/Properties	Temperature (deg F)	196	culation option	
Component Property Plot				
	Saturation Pressure Estimate (psia)	835	Bubble or Upper dew point	
Component Composition Plot				
		() Lower dew point	
	Improve saturation pressure estimate			
⊟- ji Simulation Results				
Event Log	Property	Measurements	Weight	
Simulation Graphs	Saturation pressure (psia)	835	1	
2	Liquid mass density (kg/m3)		1	
	Vapor mass density (kg/m3)		1	
	Liquid compressibility factor Z		1	
	Vapor compressibility factor Z		1	
	Liquid viscosity (cp)		1	
	Vapor viscosity (cp)		1	

Figura 14. Regresión para la presión de saturación (CMG, 2015).

Luego de haber corrido la simulación, se verifica que no exista errores en la parte de "Simulation output" y como último paso de esta sección se carga los resultados de la regresión, por lo cual, se debe dirigir a la parte de componentes, luego a "File" y "Update component properties". Aplicar los cambios y guardar. Posteriormente, mediante "cut" borrar solamente la carpeta de "Regression Parameters" y conservar la carpeta de presión de saturación y guardar nuevamente.

- Agrupamiento de componentes.

Esta sección se realiza para optimizar los tiempos en la simulación de GEM. Posterior a la sección de presión de saturación agregar "Component Lumping" que se encuentra en caracterización; dónde, se debe verificar que se encuentre el último componente C7+, después, se fija el item "Define lumping scheme in grid below" y en la parte de componentes, para este caso se estableció en cuatro componentes como se detalla en la Figura 15, luego guardar, correr la simulación y verificar el agrupamiento en la parte "Simulation output". Finalmente, cargar los resultados en la parte de componentes, eliminar la sección de "Component Lumping" y guardar.

WP_TINFERIOR.DAT	Comm	ents				
Simulation Steps	Group	up to component	:	C7+ ~		
	Output	level		1 ~		
Component Property Plot	Lum	ping Method				
	OP	rogram generate	s lumping scheme			
Saturation Pressure	0	lefine lumping sc	heme in arid below			
		lumber of lumper	d componente:	A		
in Simulation Results			components.		•	
- Simulation Output	No.	Component	1st composition	2nd composition	Scheme	
- 🔀 Simulation Graphs	1	CO2	0	1	1	
	2	N2	0.0046292926	0	2	
	3	CH4	0.49844962	0	3	
	4	C2H6	0.073762974	0	3	
	5	C3H8	0.045768856	0	3	
	6	IC4	0.016784825	0	3	
	7	NC4	0.02845996	0	3	
	8	IC5	0.016318984	0	3	
	9	NC5	0.022709738	0	3	
	10	FC6	0.044618811	0	3	
	11	C7+	0.24849694	0	4	

Figura 15. Agrupamiento de componentes (CMG, 2015).

- Cálculo de laboratorio de la expansión constante de la composición

Este procedimiento se realiza para para ajustar las propiedades del yacimiento a condiciones de fondo mediante un valor igual o mayor de presión. En la Figura 16, se puede observar la temperatura del yacimiento y la presión ingresada corresponde al equilibrio de propiedades determinadas en los resultados de la prueba de saturación de presión; los valores de presión se colocaron aleatoriamente desde la condición del reservorio hasta superficie para predecir el comportamiento de las propiedades que se encuentran en a figura (color celeste claro).

	Pressu	re Levels Feed/K	alues/Output l	evel/Stability test level						
Simulation Data Set	Comm	ents								
Titles/EOS/Units (T inferior)	Tempe	rature (deg F)		196						
Component Selection/Properties	Satura	tion Pressure Estim	ate (psia)	3000						
Composition	🛃 Imp	rove saturation pres	sure estimate							
	🗆 In	the following table t	he Liq. Vol. val	ues are percent (%) of	cell volume at s	aturation				
Experimental Data	No. of	pressure levels: 8					Tools			
Simulation Results	No.	Pressure (psia)	Exp. ROV	Liq. Vol. (% of CV)	Oil Visc. (cp)	Gas Visc. (cp)	Gas Z Factor	Oil Z Factor	Gas Density (lbm/ft3)	Oil Density
- Simulation Output		Weight	1	1	1	1	1	1	1	1
E Simulation Graphs	1	4226								
CCE Calc.	2	3472								
	3	2703								
	4	1935								
	5	1359								
	6	590.8								
	7	398.8								
	8	14.7								

Figura 16. Prueba de la expansión constante de la composición (CMG, 2015).

- Cálculo de liberación diferencial

Debido a que se trata de un fluido de petróleo tipo "Black Oil" es importante predecir dicho comportamiento a las condiciones del reservorio. Por tal razón, se implementó la temperatura del reservorio y la presión de equilibrio en el primer nodo como se detalla en la Figura 17. En esta prueba de laboratorio, se debe desmarcar la sección "Improve saturation pressure estimate" para evitar errores en la simulación.

WP_TINFERIOR.DAT Simulation Data Set Simulation Steps	Pressure	Pressure Levels Consistency Checks Feed/K values/Output level/Stability test level/Standard conditions Comments								
Component Selection/Properties	Temper	ature (deg F)	196	and cum. gas						
Composition		ove saturation press	sure estimate		Copy Co	onsistency Checks Ta	able Contents			
	No. of p	ores. levels (the row	No. 0 is reserved fo	or sat. pres): 8			Tools			
Experimental Data	No.	Pressure (psia)	Oil FVF (rb/stb)	GOR (scf/stb)	Oil SG	Gas Z Factor	Gas FVF (rcf/scf)	Gas SG (Air = 1)	Oil Viscosity (cp)	Gas \
Differential Liberation		Weight	1	1	1	1	1	1	1	1
Experimental Data	0	3000								
- Revent Log	1	4226								
- Simulation Output	2	3472								
E Simulation Graphs	3	2703								
CCE Calc.	4	1935								
Dif. Lib. Calc.	5	1359								
	6	590.8								
	7	398.8								
	8	14.7								
						v	Veight			
	Residu	al oil specific gravity	at std conditions:			1	1			
	API gra	vity at std conditions	:				1			

Figura 17. Cálculo de laboratorio de Liberación diferencial (CMG, 2015).

- Comportamiento del CO₂ con el fluido del reservorio.

Este procedimiento de laboratorio se realiza para obtener información sobre el comportamiento del fluido, en los procesos de inyección cíclica, continua y WAG. Es decir, cuando se inyecta gas en el reservorio puede disolverse e hinchar el petróleo y en consecuencia incrementará el volumen de producción y por ende permitirá comprender el comportamiento de las presiones que influirán en el factor de recobro y condiciones de los pozos productores e inyectores. Los valores ingresados de las fracciones molares del gas de la Figura 18 se obtuvieron de la literatura para la misma condición de fluido del reservorio tipo petróleo negro. Después, se guarda los cambios y se corre la simulación.

WP_TINFERIOR.DAT Simulation Data Set	IP_TINFERIOR.DAT Mixtures Feed/K values/Output level/Stability test level CCE						
Simulation Steps	Comm	cO2					
Titles/EOS/Units (T inferior)	Tempe	erature (deg F)	196	Improve saturation	pressure estimate		
Component Property Plot	Satura	tion Pressure Estimate	(psia) 3000				
Component Composition Plot	No. of	swelling experiments: 3	3				
	No.	Gas mole fraction	Sat. Pres. Estimate (psia)	Exp. Sat. Pressure (psia)	Exp. Swelling factor		
Experimental Data			Weight	1	1		
Differential Liberation		0	neight				
Experimental Data	U	U	3000				
Swelling Test (CO2)	1	0.53	3400				
Experimental Data	2	0.61	4000				
Simulation Results	3	0.63	4100				
Simulation Output							
Simulation Graphs							
CCE Calc							
Dif. Lib. Calc.							
CO2 : Swelling Calc.							

Figura 18. Cálculo de la hinchazón del CO₂ (CMG, 2015).

- Cálculo del diagrama de fases.

El cálculo de la envolvente bifásica se realiza para determinar los límites entre las regiones monofásicas y bifásicas; además, para conocer el punto crítico. También, para comprobar la veracidad de los cálculos o pruebas de laboratorio que se han ejecutado. En la Figura 19, se muestra los valores que se han establecido para la creación de la envolvente del modelo de fluido petróleo negro de la arena T inferior.

WP_TINFERIOR DAT Simulation Data Set Simulation Data Set Simulation Steps Component Selection/Properties	Specification Construction Controls Feed/K values/Output level/ Comments Envelope Type	Stability
Component Property Plot Component Composition Plot Composition Pressure Saturation Pressure Constant Composition Expansion Simulation I Liberation Swelling Test (CO2) Experimental Data Swelling Test (CO2) Simulation Results Simulation Graphs CCE Cale. CO2 : Swelling Cale. CC2 : Swelling Cale. P.T Diagram	X-Y Phase Envelope X-Y Phase Envelope Y-Axis Pressure Min. Pressure (psia) <u>0</u> Max. Pressure (deg F) <u>148 Max. Temperature (deg F) 1292 </u>	Pseudo-Ternary Phase Envelope Pressure(Temperature Specification Pressure (psia) Unknown User input 14.69595 Starting Temperature (deg F) 32 Min. vapor mole frac. -10 Max. vapor mole frac. 10

Figura 19. Estimación del diagrama de fases del reservorio T inferior (CMG, 2015).

- Exportación de los cálculos para GEM.

Luego de haber estimado los cálculos y pruebas de laboratorio necesarias de la composición del fluido del reservorio T inferior para los procedimientos de inyección de CO₂, se requiere exportar el modelo PVT. En la Figura 20, se puede observar los ítems que deben seleccionarse para luego validar la simulación. En la carpeta dónde se guardó inicialmente se debe verificar la existencia de un archivo ". gem" que se utilizará en la sección de componentes de Builder-GEM de CMG.

Figura 20. Exportación del modelo de WinProp para GEM (CMG, 2015).

3.6.4 Modelamiento dinámico de la arena T Inferior.

- Inicialización del simulador CMG.

Al iniciar el programa de CMG, se selecciona la aplicación "Builder" y se crea un nuevo archivo. Para este estudio se selecciona GEM, el mismo que es utilizado mundialmente para el modelado de yacimientos composicionales, químicos y no convencionales. También se selecciona el sistema de unidades y fecha de inicialización del modelo (Figura 21).

Builder - Reservo	oir Simulator Settings		×						
Simulator	Working Units SI Field Lab MODSI Advanced	Porosity Single Porosity DUALPOR DUALPERM MINC SUBDOMAIN	Shape Factor Gilman and Kazemi Warren and Root						
Subdivisions for Matrix Blocks Number of subdivisions 2 Volume fractions (2 values expected)									
Simulation Start Date Year: 2018 Month: 2 Day: 1 OK Cancel									

Figura 21. Ventana de inicialización de Builder de CMG (CMG, 2015).

- Carga del mapa de contorno del reservorio en BUILDER.

Para cargar el mapa del reservorio en la aplicación Builder, se da clic sobre la opción "File" y se selecciona "Open Map File". Se elije el tipo de mapa "Atlas Boundary format (.bna)" y en unidades de coordenadas x, y "ft". Y se selecciona el archivo llamado "CONTORNO T inferiror.bna" creado anteriormente. Y se da clic en "OK" (Figura 22).

Open Map Files	×
Мар Туре:	Units for x, y coordinates in the files:
Atlas Boundary format (.bna) $\qquad \lor$	m A
Atlas Boundary File	
D:\CONTORNO Y ESPESOR T inferior\CC	NTORNO T inferior.bna

Figura 22. Carga del mapa de contorno del yacimiento (CMG, 2015).

- Descripción del yacimiento, creación de la malla.

Para la creación de la malla del yacimiento, el tope de la formación se encuentra a 9735 pies de profundidad y tiene un espesor de 50 pies. La configuración del mallado es 60, 106, 8 siendo las unidades en el espacio "i, j, k" respectivamente. Cada celda "i, j" es de 100 pies de longitud. Para el ingreso de los datos anteriormente detallados se da clic en la opción "Reservoir", luego en "Create Grid" y finalmente se selecciona "Orthogonal Corner Point..." (Figura 23).

Create Orthogonal Corner Poin	t Grid	×
Grid Type Cartesian O Comer point (orthogonal)	K Direction	
Number of Grid Blocks I direction J direction 60 106	K direction	
Block widths I direction 60*100 J direction		
106*100 Controlling Grid spacing Snap spacing		
Snap grid lines as multiples of: I direction 1		
ОК	Cancel	

Figura 23. Ventana del diseño para el mallado del reservorio (CMG, 2015).

Con el objetivo de que la malla creada cubra todo el mapa del reservorio, se da clic en la sección "Reservoir", después en "Edit Grid" y finalmente en "Modify Position". Y en el recuadro de "Y Offset" se coloca el valor de 10588 y clic en "Apply" (Figura 24).

Figura 24. Mapa de contornos con malla Orthogonal Corner Point (CMG, 2015).

- Propiedades de la roca.

Para introducir las propiedades de la roca se selecciona la opción "Reservoir" y luego "Array Properties" (Figura 25). Se da clic derecho en la casilla "Grid Top" de "Layer 1", se selecciona la opción "Geological Map" y se selecciona nuevamente el archivo "CONTORNO T inferior.bna". Y clic en "OK". Posteriormente, se repite esta acción para la celda "Grid Thickness" de "Layer 1", con la diferencia que ahora en el recuadro "Values in file 1"se selecciona el archivo "ESPESOR T inferior.bna". Además, se asignó un 12.5% del espesor total del mapa para cada una de las ocho capas en las celdas. Para finalizar, se realiza el mismo procedimiento en las demás "layers".

Grid Top Grid Thickness Porosity Permeability I Preveability I	² ermeability J md X X	Permeability K md X X	Net P
UNITS: ft ft md SPECIFIED: X X X X HAS VALUES: X X X X Whole Grid	md X X	md X X	
SPECIFIED: X X X X HAS VALUES: X	X X	X X	
HAS VALUES: X X X X Whole Grid	X	×	And a second sec
Whole Grid University Operating			
Layer 1 (D:\CONTORNO Y ESPESOR T.i (D:\CONTORNO Y ESPESOR T.i 0.164 352 35 .ayer 2 (D:\CONTORNO Y ESPESOR T.i 0.2 350 35 .ayer 3 (D:\CONTORNO Y ESPESOR T.i 0.18 355 36			
Layer 2 (D:\CONTORNO Y ESPESOR T i 0.2 350 35 Layer 3 (D:\CONTORNO Y ESPESOR T i 0.18 355 36	52	347	
Layer 3 (D:\CONTORNO Y ESPESOR T i 0.18 355 36	57	355	
	62	358	
Layer 4 (D:\CONTORNO Y ESPESOR T i 0.23 349 34	45	351	
Layer 5 (D:\CONTORNO Y ESPESOR T i 0.19 350 35	53	352	
Layer 6 (D:\CONTORNO Y ESPESOR T i 0.25 356 34	47	348	
Layer 7 (D:\CONTORNO Y ESPESOR T i 0.17 348 34	42	356	
.ayer 8 (D:\CONTORNO Y ESPESOR T i 0.18 354 35	59	350	

Figura 25. Ventana de ingreso de las propiedades de la roca (CMG, 2015).

Los valores de las porosidades y permeabilidades de las capas del yacimiento se muestran en la tabla 6.

Porosidad	Permeabilidad (i)	Permeabilidad (j)	Permeabilidad (k)
0.164	352	352	347
0.2	350	357	355
0.18	355	362	358
0.23	349	345	351
0.19	350	353	352
0.25	356	347	348
0.17	348	342	356
0.18	354	359	350

Tabla 6. Porosidades y permeabilidades de las capas del yacimiento. (EP Petroecuador, 2022).

Por último, se le da clic en "OK" y para que se realicen los cálculos correspondientes a cada una de las propiedades a través de toda la malla. Se ingresan la compresibilidad de la roca de 0.0000039598 1/psi. La presión de referencia es de 4226 psi y la temperatura del reservorio es de 196 F (Figura 26).

Rock Compressibility	×
Pressure dependence of formation porosity / Ro	ck Compressibility (CPOR)
0.0000039598 1/psi	
Reference pressure for calculating the effect of r	rock compressibility (PRPOR)
4226 psi	
Reference temperature for calculating the effect of rock compressibility (TRPOR)	196 F
Thermal expansion coefficient of formation porosity (CTPOR)	0 1/F
Pressure-temperature cross-term coefficient of formation porosity (CPTPOR)	0 1/(psi*F)
	OK Cancel

Figura 26. Ingreso de la compresibilidad de la roca (CMG, 2015).

- Importación del modelo WINPROP en BUILDER.

Para importar el modelo creado en WinProp, se da clic en la sección "Components", y luego en "Import WinProp-generated Model" y se selecciona el archivo "RC-Tinferior CO2.gem" que anteriormente se creó en la aplicación WinProp (Figura 27).

🔣 Open WinProp Gen	n Mode	el File	×
← → • ↑ <mark> </mark>	« WP-	-TI-RC-CO2 > WP-TI-RC-CO2	✓ Č
Organizar 🔻 Nu	eva car	peta	≣≡ ▾ Ⅲ ?
WAG	^	Nombre	Fecha de modificación Tipo
WAG 2		RC-Tinferior CO2.gem	15/3/2023 8:18 Archivo GEM
OneDrive - Perso	on		
💻 Este equipo			
👆 Descargas			
🔮 Documentos			
Escritorio			
📰 Imágenes			
· · · · ·	* *		^
	Nombr	re: RC-Tinferior CO2.gem	✓ WinProp Gem Model File(*.gen ✓
			Abrir ▼ Cancelar

Figura 27. Selección del archivo ". gem" creado en WinProp (CMG, 2015).

Para el ingreso de las propiedades del agua de reservorio, se da clic en la sección "Components", luego en "Water Properties". El agua del reservorio tiene una compresibilidad de 0.00000335 1/psi y una viscosidad de 0.29 cp (Figura 28).

Mod	el						×
м	odel	Reservoir Tempe	erature Wat	er Properties			
	ltem	Options	Units	Default	Value		
	1	Molar density	gmole/ft3				
	2		1/psi	2.99922e-006	0.00000335		
	3		psi	14.6959			
	4		ср		0.29 cp		
			ОК	Cancel	Apply	Help	

Figura 28. Ingreso de las propiedades del agua (CMG, 2015).

- Interacción roca-fluido.

En esta sección se ingresan los datos para la creación las curvas de permeabilidades relativas de los sistemas agua-petróleo y gas-petróleo (Tabla 7 y 8).

Sw	Krw	Kro
0.228	0	0.7943
0.248	0.0015	0.7322
0.315	0.0036	0.6526
0.3423	0.0058	0.5456
0.4328	0.0185	0.3632
0.5156	0.0419	0.2261
0.5945	0.0854	0.0853
0.6358	0.1142	0.0632
0.6645	0.1525	0.052
0.7472	0.256	0.034
0.7924	0.327	0

Tabla 7. Permeabilidades relativas del sistema agua-petróleo. (EP Petroecuador,2022).

Sg	Krg	Kro
0.0005	0	0.7943
0.06	0	0.6534
0.0858	0.002	0.5493
0.1842	0.013	0.4325
0.2683	0.0353	0.2864
0.3676	0.052	0.184
0.4895	0.156	0.08532
0.5532	0.283	0.038
0.6428	0.3623	0.0124
0.6634	0.3856	0
0.8335	0.999	0

Tabla 8. Permeabilidades relativas del sistema gas-petróleo. (EP Petroecuador, 2022).

Para ingresar las tablas de permeabilidades relativas, se da clic en la sección "Rock-Fluid" y después en "Create/Edit Rock Types". En la ventana que se genera, se da clic en el botón que se encuentran al lado de "Rock Type" y se selecciona "New Rock Type". Y de esta manera se ingresa la tabla de permeabilidades relativas del sistema agua-petróleo (Figura 29).

	Rock	Туре	1	~						
ockt	rpe Prope	rties Re	lative Per	meability Table	s Hysteresis Modelli	ng				
	Liquid-G depe	as Kr Tab ndency:	le OLio @Ga	quid Saturation as Saturation	Relative Perm	eability Table:	Water-Oil Table		~	
То	ols 🕨					Smoothing m	nethod for table e	nd-points:	Quadratic smo	othina (GEM)
_	nclude ca	nillan pre	ssure (dra	inage curve if i	ising hysteresis)				1	
Include capillary pressure (drainage curve il using hysteresis)					Specified	threshold value f	or end-point	determination		
Include water gas relative permeability in table				Use new (option for rel. pen	m. table end	point scaling	(8 end points vs. 4)		
Include irreducible oil saturation due to water blocking in table					Measured	liquid saturation	does not inc	clude connate	water saturation	
	Sw	krw	krow	Comment		,				
1	0.228	0	0.7943							
2	0.248	0.0015	0.7322							
3	0.315	0.0036	0.6526							
4	0.3423	0.0058	0.5456							
5	0.4328	0.0185	0.3632							
6	0.5156	0.0419	0.2261							
7	0.5945	0.0854	0.0853							
8	0.6358	0.1142	0.0632							
9	0.6645	0.1525	0.052							
10	0.7472	0.256	0.034							
11	0.7924	0.327	0							

Figura 29. Ingreso de la tabla de permeabilidades relativas del sistema agua-petróleo (CMG, 2015).

Luego, para el ingreso de la tabla de permeabilidades relativas del sistema gas-petróleo, en la opción "Relative Permeability Table" se selecciona "Liquid-Gas Table (Gas Saturation)" (Figura 30).

🔳 Roc	k Types									×
	Rock	Туре	1		~)					
Bockty	vne Prone	rties Re	lative Perm	eability Tabl	es Hysteresis Modelli	00				
Thound	po nope		-	,	Hyderedie Hiedelik					
	Liquid-Ga depe	as Kr Tabl ndency:	le OLiqu @Gas	uid Saturation Saturation	Relative Perm	eability Table:	Liquid-Gas Table (Gas Sat	uration) \checkmark		
Тос	ols 🕨					Smoothing m	ethod for table end-points:	Quadratic smoothi	ing (GEM)	\sim
	nclude ca	pillary pre	ssure (drair	nage curve if	using hysteresis)	Specified t	breshold value for end-poir	t determination:		
	nclude ca	pillary pre	ssure hyste	eresis (îmbibit	ion curve)		ntion for rol, norm, table on	d point popling (9 p	ad pointe vo. 4)	
	nclude wa	ater gas re	elative perm	eability in tal	ble	✓ Use new o	puori for rei, perm, table en	a point scaling (o e	na points vs. 4)	
Ir	nclude im	educible o	il saturatior	due to wate	er blocking in table	Measured	liquid saturation does not ir	iclude connate wat	er saturation	
	Sg	krg	krog	Comment						
1	0.0005	0	0.7943							
2	0.06	0	0.6534							
3	0.0858	0.002	0.5493							
4	0.1842	0.013	0.4325							
5	0.2683	0.0353	0.2864							
6	0.36/6	0.052	0.184							
/	0.4895	0.156	0.08532							
8	0.5532	0.283	0.038							
9	0.6428	0.3623	0.0124							
10	0.0034	0.3030	0							
	0.6555	0.335	U							
										- 1
>							OK Cancel	Apply	Help	

Figura 30. Ingreso de la tabla de permeabilidades relativas del sistema gas-petróleo (CMG, 2015).

Finalmente, se da clic en "OK" para la construcción de las curvas de permeabilidades relativas de los sistemas agua-petróleo y gas-petróleo.

- Condiciones iniciales del yacimiento.

Las condiciones iniciales del yacimiento se ingresan en la sección "Initial Conditions" del simulador. En la pestaña "Calculation Methods", se selecciona la opción "Block Saturation at each grid block average over the depth interval spanned by the grid block" y luego la opción "Water, Oil" (Figura 31).

Calculation Method	.s Init. Reg	gion Parameters	Advanced Param	neters		
Block Saturation at	each grid block average	e over the depth inte	val spanned by the grid	block (VER1	TICAL DEPTH_AV	/E)
Perform Grav	rity-Capillary Equilibrium	of A Reservoir Initially	Containing			
◯ Water	Oil, Gas (WATER_OI	L_GAS)				
Water	Oil (WATER_OIL)-	No free gas				
◯ Water	Gas (WATER_GAS)					
W	ater-Gas Zone Transitio	n				
	Use water-gas capillary	y pressure curves and	determine water-gas tra	nsition zone.	(TRANZONE)	
۲	Ignore ALL capillary p	pressure curves. (NO	TRANZONE)			
Disasa Dasas						
Add pl	ure Correction lase pressure correction	to ensure that the re	servoir is initially in gravit	ational equilib	rium. (EQUIL)	
Add ph Do not	ure Correction lase pressure correction add a phase pressure o	n to ensure that the re correction. (NOEQUI	servoir is initially in gravit L)	ational equilib	rium. (EQUIL)	
Add pt Do not	ure Correction nase pressure correction add a phase pressure of each grid block same a	n to ensure that the re correction. (NOEQUI as saturation prevailin	servoir is initially in gravit L) g at the block center (V	ational equilib	rium. (EQUIL)	
Block Saturation at	ure Correction nase pressure correction add a phase pressure o each grid block same a rity-Capillary Equilibrium	to ensure that the re correction. (NOEQUI as saturation prevailin of A Reservoir Initially	servoir is initially in gravit L) g at the block center (V / Containing	ational equilib 'ERTICAL BI	rium. (EQUIL)	
Add pl Do not Block Saturation at Perform Grav Water	ure Correction nase pressure correction add a phase pressure of each grid block same a rity-Capillary Equilibrium Oil, Gas (WATER_OI	o to ensure that the re correction. (NOEQUI as saturation prevailin of A Reservoir Initially L_GAS)	servoir is initially in gravit L) g at the block center (V / Containing	ational equilib ERTICAL BI	rium. (EQUIL)	
Block Saturation at Perform Grav Water Water Water Water	ure Correction nase pressure correction add a phase pressure of each grid block same a rity-Capillary Equilibrium Oil, Gas (WATER_OI Oil (WATER_OIL) - N	n to ensure that the re correction. (NOEQUI as saturation prevailin of A Reservoir Initially L_GAS) No free gas	servoir is initially in gravit L) g at the block center (V / Containing	ational equilib	rium. (EQUIL)	
Perform Grave Veter Water Water Water Water Water Water	ure Correction hase pressure correction add a phase pressure (each grid block same a rity-Capillary Equilibrium , Oil, Gas (WATER_OI) - N Gas (WATER_GAS)	n to ensure that the re correction. (NOEQUI as saturation prevailin of A Reservoir Initially L_GAS) No free gas	servoir is initially in gravit L) g at the block center (V / Containing	ational equilib	rium. (EQUIL)	
Place Press Add pl Do not Deck Saturation at Perform Gra Water Water Water User s	ure Correction hase pressure correction add a phase pressure (each grid block same a rity-Capillary Equilibrium , Oil, Gas (WATER_OIL) - N Gas (WATER_OAL) - N Gas (WATER_GAS) pecified composition as	to ensure that the re correction. (NOEQUI as saturation prevailin of A Reservoir Initially L_GAS) No free gas a function of depth (servoir is initially in gravit) g at the block center (V / Containing COMP)	ational equilib	rium. (EQUIL)	
Pridae Press	ure Correction hase pressure correction add a phase pressure (each grid block same a /rty-Capillary Equilibrium , Oil, Gas (WATER_OIL) - N Gas (WATER_OLL) - N Gas (WATER_GAS) becified composition as sure and saturations for	to ensure that the re- correction. (NOEQUI as saturation prevailin of A Reservoir Initially L_GAS) No free gas a function of depth (each grid block (US	servoir is initially in gravit) g at the block center (V / Containing COMP) ER_INPUT)	ational equilib	num. (EQUIL)	
Block Saturation at Perform Gra Water Water Users specified pres Pressure (PR specified by th	ure Correction hase pressure correction add a phase pressure (each grid block same a rity-Capillary Equilibrium , Oil, Gas (WATER_OI , Oil (WATER_OIL) - N , Gas (WATER_GAS) pecified composition as sure and saturation (e user in the Reservoir)	to ensure that the re correction. (NOEQUI es saturation prevailin of A Reservoir Initially L_GAS) No free gas a function of depth (each grid block (US SW) and Global Cor Array Properties Sect	servoir is initially in gravit L) g at the block center (V containing COMP) ER_INPUT) possition (ZGLOBALC) ion.	ational equilib ERTICAL BI	INTERNET INTERNET	

Figura 31. Ingreso del método de cálculo de las condiciones iniciales del yacimiento (CMG, 2015).

En la pestaña "Int. Region Parameters" se ingresan la presión y profundidad de referencia, así como la profundidad del contacto agua-petróleo. Finalmente, se ingresa la composición molar de la zona de petróleo y se da clic en "OK" (Figura 32).

Calculation Methods	Init. Region Parameters		Advance	d Parameters		
itialization Region 1	\sim					
nitialization Region Parameters						
nitialization Region Type 1 is not def	fined. Grid depth range: 9735	5.38 to	9785 ft			
Reference Pressure and Depth		Oil Z	one and Ga	s Cap Compositions	3	
Pressure (REFPRES):	4226 psi		Comp.	Oil Zone (ZOIL)	Gas Cap (ZGAS)	
Depth (REFDEPTH) :	9760 ft	1	CO2	0.0	0.0	
Phase Contact Depths		2	NZ CH4teCC	0.00463	0.0	
Water-Oil Contact (DWOC)	9782 ft	3	C7+	0.74667	0.0	
Gas-Oil Contact (DGOC)		-	Total:	1.0	0.0	
Water-Gas Contact (DWGC)						
Casillan: Dessues at Disase Contas	•-					
Gas-Oil capillary pressure at the	лs					
gas-oil contact (GOC_PC)						
Water-Oil capillary pressure at the water-oil contact (WOC_PC)						
Water Saturation						
Below Water-Oil Contact (SWOC)						
Critical Depth						
Depth at which the phase identity, oil or gas, of a single-phase fluid is determined (CDEPTH)						

Figura 32. Ingreso de los parámetros iniciales del yacimiento (CMG, 2015).

- Pozos y datos recurrentes.

El yacimiento inicialmente cuenta con siete pozos productores y un pozo inyector de agua. Para la creación de los pozos se ingresa a la sección "Well & Recurrent", se selecciona la opción "Well New" y se mostrará la ventana para crear los pozos, en la cual, al primer pozo productor se le denominará "SSF-032" y en "Types" se selecciona "PRODUCER" (Figura 33).

📰 Create New We	ı X
ID & Type Constraints Multipliers Wellbore Injected Fluid	Enter a single well name or a comma (,) separated list of names. Name: SSF-032 Add multiple wells numbered 1 through 10 The name is used as a base and numbers are appended. Type: PRODUCER Group: None> Sid or 2nd level group with no other groups attached to it
	Simulation start date: 2018-02-01 Image: Definition date: 2018-02-01 Add wells using a drilling schedule of 1 wells every 2 months.
	Add new well OK Cancel Help

Figura 33. Ventana de creación de los pozos (CMG, 2015).

Los parámetros operacionales de los pozos productores son los siguientes:

Tasa de producción máxima (stl): 150 bbl/d

Presión de fondo mínima (bhp): 50 psi

De la misma manera se crean los demás pozos productores, los cuales son denominados: SSF-013, SSF-017, SSF-028, SSF-037, SSF-039 y SSF-047. Para la creación del pozo inyector se ingresa a la sección "Well & Recurrent", se selecciona la opción "Well New" y se mostrará la ventana para crear los pozos. Al pozo se los denominará "SSF-W-I" y en "Types" se selecciona "INJECTOR" (Figura 34).

Create New We	al X
ID & Type Constraints Multipliers Wellbore	Enter a single well name or a comma (.) separated list of names. Name: SSF-W-I Add multiple wells numbered 1 through 10 The name is used as a base and numbers are appended. Type: INJECTOR
	Group: 3rd or 2nd level group with no other groups attached to it
	Simulation start date: 2018-02-01
	Add wells using a drilling schedule of 1 wells every 2 months.
	Add new well OK Cancel Help

Figura 34. Ventana de creación del pozo inyector de agua (CMG, 2015).

Los parámetros operacionales del pozo inyector de agua son los siguientes:

Tasa de inyección máxima (stw): 400 bbl/d Presión de fondo máxima (bhp): 100 psi

- Perforación de los pozos.

Para la perforación de los pozos, se selecciona el pozo respectivo y se da clic sobre la sección "Well Completion Data", luego en la ventana "Perforation", y en la casilla "User Block Address" se digita las celdas de la malla a perforar (Tabla 9).

Nambur dalaraa	Coordenada de la malla			
Nombre del pozo	Inicio	Final		
SSF-013	20 17 1	20 17 8		
SSF-017	17 38 1	17 38 8		
SSF-028	24 9 1	24 9 8		
SSF-032	22 5 1	22 5 8		
SSF-037	15 28 1	15 28 8		

Tabla 9. Ubicación de los pozos en la malla.

SSF-039	8 42 1	8 42 8
SSF-047	8 46 1	8 46 8
SSF-W-I	18 32 1	18 32 8

- Tiempo de simulación

Para ingresar el tiempo que dura la simulación, se ubica la sección "Well & Current", se selecciona la opción "Dates" y se mostrará una ventana. Damos clic al ícono "Add a range of dates" y se nos despliega otra ventana, en la que seleccionamos la casilla "To" y escogemos la fecha "1 de febrero del año 2040", ya que el proyecto está diseñado para un tiempo de 22 años, y en "Step" se selecciona "1" y "Month" (Figura 35).

Select a range of dates					
From:	2018-02-01 (0.00 day)				
Step:	1	ОК			
	Month ~	Cancel			

Figura 35. Ventana de selección de fechas para la simulación (CMG, 2015).

		and date of combe c			
#	Date & Time (day)	set STOP	Comments	^	Add a new date:
244	* 2038-05-01 (7394.00)				
245	* 2038-06-01 (7425.00)				Add a range of dates:
246	* 2038-07-01 (7455.00)				Delete selected empty
247	* 2038-08-01 (7486.00)				dates:
248	* 2038-09-01 (7517.00)				
249	* 2038-10-01 (7547.00)				
250	* 2038-11-01 (7578.00)				
251	* 2038-12-01 (7608.00)				Delete all empty dates:
252	* 2039-01-01 (7639.00)				
253	* 2039-02-01 (7670.00)				
254	* 2039-03-01 (7698.00)				To limit output file size, limit g
255	* 2039-04-01 (7729.00)				output (with WSRF) to:
256	* 2039-05-01 (7759.00)				Do not limit grid output
257	* 2039-06-01 (7790.00)				Remove existing keyword
258	* 2039-07-01 (7820.00)				(WSRF) to limit grid output
259	* 2039-08-01 (7851.00)				Recommendations
260	* 2039-09-01 (7882.00)				
261	* 2039-10-01 (7912.00)				
262	* 2039-11-01 (7943.00)				
263	* 2039-12-01 (7973.00)				
264	* 2040-01-01 (8004.00)				
265	2040-02-01 (8035.00)	~			

Figura 36. Ventana de fechas correspondientes a la simulación (CMG, 2015).

Después se marca la casilla que contiene la fecha en la que debe terminar la simulación, es decir el "1 de febrero del año 2040". Finalmente, se da clic en "Close". A continuación, se muestran las imágenes en 2D y 3D de la malla del yacimiento con los pozos creados (Figuras 37 y 38).

Figura 37. Malla del yacimiento en dirección IJ- 2D areal (CMG, 2015).

Figura 38. Malla del yacimiento con 7 pozos productores y un pozo inyector de agua (CMG, 2015).

3.6.5 Construcción de los modelos de recuperación.

Para esta investigación, se considera el "1 de febrero del año 2020", como fecha de inicio de la ejecución de los 3 tipos de recuperación de petróleo a evaluar; inyección continua de CO_2 , inyección cíclica de CO_2 e inyección alternada de agua y gas (WAG). Además, en los tres casos se inyectará el mismo volumen de gas correspondiente al 15% del volumen poroso, es decir 621690000 ft³.

- Construcción del caso de inyección continua de CO₂

Para la construcción del caso de inyección continua de CO_2 se considera como fecha de inicio el "1 de febrero del año 2020". Este proceso se ejecuta durante 20 años, es decir, hasta el "1 de febrero del año 2040".

- Creación de los pozos

En el modelo de inyección continua de CO₂ se crearán dos nuevos pozos inyectores de CO₂. Esto se realiza ingresando a la sección "Well & Recurrent", se selecciona la opción "Well New" y se mostrará una ventana para la creación de pozos. A los nuevos pozos se les denominará "SSF-CO2-I1" y "SSF-CO2-I2". En la opción "Types" se selecciona "INJECTOR". La fecha de creación de los nuevos pozos es el "1 de febrero del año 2020" (Figura 39).

🔳 Create New We	II ×
ID & Type	
Constraints Multipliers	Enter a single well name or a comma (.) separated list of names. Name: SSF-CO2-I1 Add multiple wells averthered I thereafter II The name is used as a base and
Wellbore Injected Fluid	Type: INJECTOR V
	In order to keep the new type the Constraints has to be set too.
	Simulation start date: 2018-02-01
	Add wells using a drilling schedule of 1 wells every 2 months.
	Add new well OK Cancel Help

Figura 39. Ventana de creación del pozo inyector de agua (CMG, 2015).

Y en la opción "Injected Fluid", se selecciona "SOLVENT" y en la casilla de fracción molar del CO_2 se coloca el valor de 1.0, como se muestra en la figura 40.

	#	Component	Mole Fraction
ſ	1	CO2	1.0
	2	N2	0.0
	3	CH4toC6	0.0
	4	C7+	0.0
		Total:	1.0

Figura 40. Ventana de ingreso de las fracciones molares de los componentes a inyectar (CMG, 2015).

Los parámetros operacionales de los pozos inyectores de CO₂ son los siguientes:

- Tasa de inyección de CO₂ máxima (stg): 42600 ft³/d
- Presión de fondo máxima (bhp): 1500 psi

- Perforación de los pozos

Para la perforación de los pozos inyectores de CO₂, se selecciona el pozo y se da clic sobre la sección "Well Completion Data", después en la ventana "Perforation", y en la casilla "User Block Address" se digita las celdas de la malla a perforar.

En tabla 10, se detalla las celdas utilizadas para la perforación de los pozos inyectores de CO₂.

Nombre del pozo	Coordenada de la malla	
	Inicio	Final
SSF-CO ₂ -I1	6 33 1	6 33 8
SSF-CO ₂ -I2	27 18 1	27 18 8

Tabla 10. Ubicación de los pozos inyectores de CO_2 en la malla.

En la siguiente figura 41 se muestra el yacimiento con todos los pozos creados.

Figura 41. Malla del yacimiento con 7 pozos productores, un pozo inyector de agua y 2 pozos inyectores de CO₂ (CMG, 2015).

- Construcción del caso de inyección cíclica de CO₂

Para la construcción del caso de inyección cíclica de CO_2 se considera como fecha de inicio el "1 de febrero del año 2020". Este proyecto se ejecuta hasta el "19 de octubre del año 2025", desde esta fecha hasta el "1 de febrero del año 2040" se aplica la inyección continua de CO_2 .

En la tabla 11, se muestra el programa de inyección durante 20 años.

	POZOS	APERTURA	CIERRE
	INYECTORES	1/2/2020	22/2/2020
CICLO I	PRODUCTORES	28/2/2020	28/8/2020
	INYECTORES	28/8/2020	17/9/2020
CICLO 2	PRODUCTORES	24/9/2020	24/3/2021
	INYECTORES	24/3/2021	31/3/2021
CICLO 3	CICLO 3 PRODUCTORES	7/4/2021	7/10/2021
CICLO 4	INYECTORES	7/10/2021	28/10/2021

Tabla 11. Programa de inyección durante los 20 años del estudio.

	PRODUCTORES	4/11/2021	4/5/2022
CICLO 5	INYECTORES	4/5/2022	26/5/2022
	PRODUCTORES	2/6/2022	2/12/2022
CICLO 6	INYECTORES	2/12/2022	23/12/2022
	PRODUCTORES	30/12/2022	30/6/2023
CICLO 7	INYECTORES	30/6/2023	21/7/2023
	PRODUCTORES	28/7/2023	28/1/2024
CICLO 8	INYECTORES	28/1/2024	18/2/2024
	PRODUCTORES	25/2/2024	25/8/2024
CICLO 9	INYECTORES	25/8/2024	15/9/2024
	PRODUCTORES	22/9/2024	22/3/2025
CICLO 10	INYECTORES	22/3/2025	12/4/2025
	PRODUCTORES	19/4/2025	19/10/2025
INYECCION CONTINUA DE CO ₂	INYECTORES	19/10/2025	1/2/2040
	PRODUCTORES	26/1/2025	1/2/2040

- Creación de los pozos

Para este modelo, se realizará un cambio en las condiciones operacionales del pozo inyector de agua "SSF-W-I", el cual se convertirá en inyector de CO₂ a partir del "1 de febrero del año 2020". Además, al igual que en el modelo de inyección continua de CO₂, se crean dos nuevos pozos inyectores de CO₂, los cuales son denominados "SSF-CO2-I1" y "SSF-CO2-I2".

Los pozos inyectores de CO2 tendrán las siguientes condiciones operacionales:

- Tasa de inyección de CO₂ máxima (stg): 38200 ft³/d
- Presión de fondo máxima (bhp): 1500 psi

La ubicación de los pozos será la misma que en el modelo de inyección continua de CO₂.
- Construcción del caso de inyección WAG

Al igual que en los casos anteriores, se inicia el proceso de inyección WAG el "1 de febrero del año 2020". Este proyecto se ejecuta hasta el "1 de febrero del año 2026", desde esta fecha hasta el "1 de febrero del año 2040" se aplica la inyección continua de CO₂. Además, se fijó un tamaño de tapón del 6% del volumen poroso del yacimiento, el cual corresponde a 37301400 ft³ o 6643170.08 bbl.

Condiciones operacionales de la inyección	WAG
Año de inicio de la inyección WAG	2020
Tamaño del tapón	6% VP
Relación WAG	0.5
Volumen total de gas inyectado	1 VP
Frecuencia de los ciclos	1 año
Tasa de inyección de agua por día en cada pozo	6100 bbl
Tasa de inyección de gas por día en cada pozo	68100 ft ³

Tabla 12. Condiciones operacionales del proceso de inyección WA	G.
---	----

Cuando las condiciones operacionales estén fijadas, se procede a inyectar los tapones de gas y agua continuamente hasta finalizar con el último tapón de agua de 6% del volumen poroso, es decir, hasta el "1 de febrero del año 2026.

Desde el "1 de febrero del año 2026 en adelante se realiza la inyección continua de gas; en este periodo los pozos inyectores tendrán las siguientes condiciones operacionales:

- Tasa de inyección de CO₂ máxima (stg): 25900 ft³/d
- Presión de fondo máxima (bhp): 1500 psi

La ubicación de los pozos será la misma que en el modelo de inyección continua de CO₂.

CAPITULO IV: ANÁLISIS Y DISCUSIÓN DE RESULTADOS

4.1 TASA DE PRODUCCIÓN DE PETRÓLEO

4.1.1 Inyección continua.

Figura 42. Producción de petróleo por el método de inyección continua de CO₂ (CMG, 2015).

En la Figura 42 se puede observar que la producción de los siete pozos productores a condiciones normales de superficie es 1050 bpd y se mantiene hasta el 02/05/2020; posteriormente, existe un decline en la producción a 1046 bpd hasta el 02/05/2021. A medida que avanza la inyección continua de gas la presión declina y la producción cae hasta 43 bpd hasta la fecha 02/01/2024 y se mantiene hasta el año 2025. La producción de petróleo hasta el 2030 oscila entre 59 bpd y 68 bpd, este comportamiento se repite hasta el año 2035 y para el año 2040 la producción alcanza los 51 bpd.

4.1.2 Inyección cíclica.

Figura 43. Producción de petróleo por el método de inyección cíclica de CO₂ (CMG, 2015).

En la Figura 43 se puede visualizar que la producción de los pozos a flujo normal de los siete pozos es 1050 bpd. A partir de la fecha 01/02/2020 empieza el primer ciclo de inyección y la producción de petróleo a condiciones de superficie se mantiene en 1046 bpd hasta el tercer ciclo. En la tabla 13, se detalla el comportamiento de la producción para los siguientes ciclos.

Ciclos	Inicio del ciclo	Fin del ciclo	Producción máxima (bpd)	Producción mínima (bpd)
Cuarto	7/10/2021	4/5/2022	1046	613
Quinto	4/5/2022	2/12/2022	785	169
Sexto	2/12/2022	30/6/2023	297	69
Séptimo	30/6/2023	28/1/2024	124	33
Octavo	28/1/2024	25/8/2024	58	17
Noveno	25/8/2024	22/3/2025	30	10
Décimo	22/3/2025	19/10/2025	17	0

Tabla 13. Picos de producción de CO₂.

Debido a que la producción en el último ciclo tiende a cero posterior al año 2025, se aplicó la inyección continua, para recuperar petróleo adicional. Para el año 2030 y 2035 la producción de petróleo alcanza los 58 bpd y se mantiene constante hasta 02/02/2037 y para el año 2040 la producción se reduce a los 50 bpd.

4.1.3 Inyección WAG.

Figura 44. Producción de petróleo por el método de inyección WAG (CMG, 2015).

En la Figura 44 se pude visualizar que la producción a flujo natural de 1050 bpd se mantiene hasta 01/06/2020, posteriormente la producción desciende a 1046 bpd hasta 02/06/2021 producto de la inyección WAG. Para la fecha 02/02/2023 la producción es de 120 bpd; hasta el año 2025 la producción es 130 bpd, adicionalmente en este tramo existen incrementos y descensos de producción ocasionados por los tapones de agua y gas. Para el año 2030 la producción es de 107 bpd, el pico máximo registrado es de 120 bpd. Para el año 2035 la producción se reduce a 48 bpd y hasta el año 2040 la producción desciende hasta los 38 bpd. Además, se puede notar que la curva de producción del método WAG es superior a los métodos de inyección continua y cíclica.

4.2.1 Inyección continua.

Figura 45. Saturaciones promedio de la inyección continua (CMG, 2015).

En la Figura 45 para las condiciones normales de producción, las saturaciones a condiciones estándares tienen los siguientes valores $S_o = 0,77$, $S_w = 0,228$ y $S_g = 0$. Se puede notar el cambio de saturaciones para cada 5 años. Porque, para el año 2020 las saturaciones son $S_o = 0,66$, $S_w = 0,231$ y $S_g = 0,10$, para el año 2025 las saturaciones son $S_o = 0,34$, $S_w = 0,251$ y $S_g = 0.41$, para el año 2030 las saturaciones son $S_o = 0,328$, $S_w = 0,291$ y $S_g = 0.37$, para el año 2035 las saturaciones son $S_o = 0,328$, $S_w = 0,3291$ y $S_g = 0.37$, para el año 2040 las saturaciones son $S_o = 0,328$, $S_w = 0,348$, $S_w = 0,3$

Para conocer el porcentaje de CO_2 recuperado en superficie se sumó la saturación de los años 2025, 2030, 2035 y 2040 que da un valor de 1,47 y al dividir con la saturación de gas alcanzada producto de la inyección continua de CO_2 de 0,42 para la fecha 24/11/2022 y luego restando con la saturación de gas inicial de la fecha 01/01/2020 de 0,10 da como resultado 0.19, posteriormente se multiplicó por 100 para conocer el porcentaje, dando como resultado 19%, lo cual representa la cantidad de CO_2 recuperado y el 81% restante almacenado.

4.2.2 Inyección cíclica.

Figura 46. Saturaciones promedio de la invección cíclica (CMG, 2015).

En la Figura 46 se puede observar que en condiciones normales las saturaciones de las fases tienen los siguientes valores $S_o = 0,77$, $S_w = 0,228$ y $S_g = 0$. Además, se puede notar variaciones de saturaciones hasta el final de la simulación, porque, para el año 2020 las saturaciones son $S_o = 0,67$, $S_w = 0,23$ y $S_g = 0,10$, para el año 2025 las saturaciones corresponden a $S_o = 0,33$, $S_w = 0,2348$ y $S_g = 0.43$, para el año 2030 las saturaciones son $S_o = 0,328$, $S_w = 0,2347$ y $S_g = 0.44$, para el año 2035 las saturaciones son $S_o = 0,328$, $S_w = 0,2347$ y $S_g = 0.44$, para el año 2035 las saturaciones son $S_o = 0,328$, $S_w = 0,2347$ y $S_g = 0.44$, para el año 2035 las saturaciones son $S_o = 0,328$, $S_w = 0,2347$ y $S_g = 0.44$, para el año 2035 las saturaciones son $S_o = 0,328$, $S_w = 0,2347$ y $S_g = 0.44$, para el año 2035 las saturaciones son $S_o = 0,328$, $S_w = 0,2347$ y $S_g = 0.44$, para el año 2035 las saturaciones son $S_o = 0,328$, $S_w = 0,2347$ y $S_g = 0.44$, para el año 2035 las saturaciones son $S_o = 0,328$, $S_w = 0,2347$ y $S_g = 0.44$, para el año 2035 las saturaciones son $S_o = 0,328$, $S_w = 0,2347$ y $S_g = 0.44$, para el año 2035 las saturaciones son $S_o = 0,328$, $S_w = 0,2347$ y $S_g = 0.44$, para el año 2035 las saturaciones son $S_o = 0,328$, $S_w = 0,2347$ y $S_g = 0.44$, para el año 2035 las saturaciones son $S_o = 0,328$, $S_w = 0,2347$ y $S_g = 0.44$, para el año 2035 las saturaciones son $S_o = 0,328$, $S_w = 0,2347$ y $S_g = 0.44$, para el año 2035 las saturaciones son $S_o = 0,328$, $S_w = 0,2347$ y $S_g = 0.44$, para el año 2035 las saturaciones son $S_o = 0,328$, $S_w = 0,2347$ y $S_g = 0,44$, para el año 2035 las saturaciones son $S_o = 0,328$, $S_w = 0,2347$ y $S_g = 0,44$, para el año 2035 las saturaciones son $S_o = 0,328$, $S_w = 0,2347$ y $S_g = 0,44$, para el año 2035 las saturaciones son $S_o = 0,328$, $S_w = 0,2347$ y $S_g = 0,44$, para el año 2035 las saturaciones son $S_o = 0,548$ y $S_g = 0,548$ y $S_g = 0,548$ y $S_g = 0,548$ y

0,325, $S_w = 0,234$ y $S_g = 0.45$ y para el año 2040 las saturaciones son $S_o = 0,32$, $S_w = 0,2344$ y $S_g = 0.46$. De esta manera, se puede deducir que el comportamiento de la saturación de petróleo es similar al método de inyección continua, la saturación de gas incrementa un 40% y la saturación de agua también incrementa, pero en menor proporción.

Para conocer el porcentaje de CO_2 recuperado en superficie se sumó la saturación de los años 2025, 2030, 2035 y 2040 que da un valor de 1,78 y al dividir con la saturación de gas alcanzada por cada ciclo producto de la inyección cíclica de CO_2 de 0,41 para la fecha 5/11/2022 y luego restar con saturación de gas inicial de la fecha 01/01/2020 de 0,10 da como resultado 0.13 posteriormente se multiplico por 100 para conocer el porcentaje y da como resultado 13 %, lo cual representa la cantidad de CO_2 recuperado y el 87% restante almacenado.

Figura 47. Saturaciones promedio de la inyección WAG (CMG, 2015).

En la Figura 47 se puede visualizar que a las condiciones normales las saturaciones de las fases tienen los siguientes valores $S_o = 0,77$, $S_w = 0,228$ y $S_g = 0$; además, se puede notar variaciones de saturaciones como en los casos anteriores, para el año 2020 las

saturaciones son $S_o = 0,65$, $S_w = 0,23$ y $S_g = 0,10$, para el año 2025 las saturaciones son $S_o = 0,34$, $S_w = 0,64$ y $S_g = 0,02$, para el año 2030 las saturaciones son $S_o = 0,32$, $S_w = 0,57$ y $S_g = 0.11$, para el año 2035 las saturaciones son $S_o = 0,31$, $S_w = 0,50$ y $S_g = 0.19$ y para el año 2040 las saturaciones son $S_o = 0,295$, $S_w = 0,46$ y $S_g = 0.24$. Por otra parte, se puede notar un comportamiento inversamente proporcional en el año 2023 de las saturaciones de gas y agua el cual corresponde a los ciclos del método WAG, en el caso del agua la saturación aumenta en cada ciclo y barre al petróleo de mejor manera que los métodos anteriores y el gas tiende a cero para el año 2026 hasta seis meses después, luego de este tiempo aumenta por la inyección continua.

Para conocer el porcentaje de CO₂ recuperado en superficie se sumó la saturación de los años 2025, 2030, 2035 y 2040 que da un valor de 0.56 y al dividir con la saturación de gas alcanzada producto de la inyección WAG de 0,35 para la fecha 22/09/2021 y luego se restó con la saturación de gas inicial de la fecha 01/01/2020 de 0,10 da como resultado 0.525, posteriormente se multiplico por 100 para conocer el porcentaje y da como resultado 52.5%, lo cual representa la cantidad de CO₂ recuperado y el 47.5% restante almacenado.

4.3 CORTE DE AGUA

Figura 48. Producción de agua de los métodos de inyección (CMG, 2015).

En la Figura 48 se puede notar que se obtiene mayor producción de agua en método WAG ya que se inyecta agua adicional a las condiciones normales de producción el mayor corte estimado para este caso es del 0.89 de corte a condiciones de superficie y declina hasta 0.85 hasta el 2040. El siguiente método con mayor producción de agua corresponde al método de inyección continua el mismo que empieza a aumentar desde el año 2027 y alcanza un corte de agua de 0.72 y para el método de inyección cíclica el corte de agua en menor y se mantiene en 0.02 a condiciones de superficie, de esta manera se puede definir que con el método de inyección cíclica la producción de agua por pozo es menor a condiciones de superficie que en los métodos de inyección WAG y continua. Uno de los principales factores que influye al incremento del corte de agua son las capas permeables que existen en la arena T inferior por lo cual el agua inyectada se desplaza a través de las capas permeables, movilizando al petróleo y por ende esto también resulta en un mayor contenido de agua en la producción de los pozos.

4.4 PRESIONES

Figura 49. Presiones de agua de los métodos de inyección (CMG, 2015).

En la Figura 49 se puede observar el decline de las presiones para los tres métodos de inyección aplicados, cada método parte de una presión inicial del yacimiento de 4226 Psi. Desde que inicia la etapa de inyección, las presiones para los tres casos declinan gradualmente hasta 01/08/2022. Además, la caída de presión para los métodos de inyección cíclica y continua se mantienen desde el año 2023 hasta el 2040 en 110 Psi; en el caso de la inyección WAG se puede notar que la presión del reservorio incrementa con cada ciclo de inyección hasta alcanzar un total de 900 Psi a la fecha 01/02/26 y tiende a declinar hasta mantenerse en el rango de 110 Psi a partir del año 2034. De este modo se puede concluir que el método que incrementa la presión del yacimiento es el WAG y por ende la producción.

4.5 FACTOR DE RECOBRO

Figura 50. Factores de recobro de los tres métodos (CMG, 2015).

En la Figura 50 se denota el comportamiento del factor de recobro, siendo el mismo a condiciones iniciales inferior al 15%, desde la fecha 01/06/2022 el factor de recobro tiende a incrementar, producto de la inyección y con el método de inyección cíclica de CO_2 se obtuvo un factor de recobro de 31.5 %, con el método de inyección continua de CO_2 se obtuvo un factor de recobro de 32 % y con el método de inyección WAG CO_2 se obtuvo un factor de recobro de 37%. La diferencia de los factores de recobro se debe al comportamiento de la presión del reservorio y en consecuencia los efectos son proporcionalmente; es decir, mientras el reservorio conserve mayoritariamente la presión se obtendrá mayor producción. De este modo, se pudo corroborar la eficiencia de los métodos aplicados porque si se obtuvo un porcentaje adicional de factor de recobro con los métodos e inyección de CO_2 que con las condiciones actuales.

4.6 ALMACENAMIENTO DE CO₂

4.6.1 Inyección continua

Figura 51. Almacenamiento de CO₂ de la inyección continua (CMG, 2015).

En la Figura 51 se observa que los moles de CO₂ atrapados en el reservorio comienzan a aumentar significativamente en el año 2021, debido a que la inyección continua de CO₂ empieza en el año 2020. Posteriormente, el 18/3/2021, la curva alcanza un valor de 6,12x10e6 moles, luego disminuye continuamente hasta el 23/02/2022 donde llega a un valor de 2,09x10e6 moles. Posteriormente, el valor de los moles de CO₂ atrapados en el yacimiento empieza a aumentar continuamente; en el año 2025 alcanza un valor de 8,2x10e6 moles, en el año 2030 supera los 1,6x10e7 moles, en el año 2035 llega a 2,2x10e7 moles y finalmente en el año 2040 alcanza los 2,6x10e7 moles.

4.6.2 Inyección cíclica

Figura 52. Almacenamiento de CO₂ de la inyección cíclica (CMG, 2015).

En la Figura 52 destaca que los moles de CO_2 atrapados en el yacimiento comienzan a notarse en el año 2021, a partir de esta fecha el volumen de gas atrapado aumenta y disminuye debido a los ciclos de inyección de CO_2 , hasta el año 2026 donde el volumen de gas atrapado empieza a aumentar continuamente, ya que a partir de este año se implementa el proceso de inyección continua de CO_2 . En el año 2030 existe una cantidad de 1,3x10e7 moles atrapados en el yacimiento, en el año 2035 hay 1,8x10e7 moles y en año 2040 se alcanza una cantidad de 2x10e7 moles de CO_2 atrapados en el yacimiento.

4.6.3 Inyección WAG

Figura 53. Almacenamiento de CO₂ de la inyección WAG (CMG, 2015).

La figura 53, presenta un comportamiento similar a los modelos de inyección continua y cíclica de CO₂, los moles de CO₂ atrapados en el yacimiento comienzan a notarse a partir del año 2021, fecha desde la cual, el volumen de gas atrapado aumenta y disminuye de manera muy pronunciada debido a los ciclos de inyección de CO₂ y de agua, hasta el año 2026 donde la curva se estabiliza y aumenta levemente hasta el año 2030 donde alcanza una cantidad de 3,6x10e7 moles atrapados en el yacimiento, en el año 2035 se disminuye a una cantidad de 2,2x10e7 moles y finalmente en el año 2040 se alcanza una cantidad de 2,6x10e7 moles de CO₂ atrapados en el yacimiento.

CAPITULO V: CONCLUSIONES Y RECOMENDACIONES

5.1 CONCLUSIONES

- De acuerdo con la simulación realizada con el software WinProp para la generación de las propiedades del fluido a condiciones de inyección de CO₂ y GEM de CMG permitieron predecir el comportamiento de los fluidos durante 20 años de inyección en la arena T inferior que se seleccionó por tener las condiciones de permeabilidad de 352 md, porosidad de 16.4% y una presión inicial de 4226 Psi; además, se consideró dos pozos inyectores para lograr una mayor eficiencia de barrido areal considerando la estructura y geometría del yacimiento.
- La inyección y desplazamiento del CO₂ se implementó para aprovechar el gas asociado que se quema en los mecheros del campo e incrementar la productividad de los pozos con los métodos de inyección continua de CO₂, Cíclica y WAG a altas presiones para lograr una alta miscibilidad entre el CO₂-petróleo y así reducir la viscosidad, mejorar la movilidad y aumentar la eficiencia de barrido del yacimiento, lo cual permitió obtener un mayor desplazamiento del petróleo residual y una mayor recuperación de petróleo.
- En base a la simulación realizada se determinó que los factores de recobros de los métodos de inyección son: continua 32%, inyección cíclica 31.5% e inyección WAG se alcanzó el 37%; de este modo, se logró comprobar que el método más eficiente es el WAG para la arena T inferior. Adicionalmente, para la inyección cíclica se obtuvo una producción acumulada de 2.73 MMbbl en los 20 años de simulación, en la inyección continua se obtuvo una producción acumulada de 2.75 MMbbl y en la inyección WAG se obtuvo una producción acumulada de 3.04 MMbbl lo cual justifica el aumento del factor recobro hasta el año 2040.

- El almacenamiento de CO₂ obtenido hasta el año 2040 en la Arena T inferior del Campo Shushufindi, por el método de inyección continua es de 2,6x10e7 moles de CO₂ lo cual representa el 81% y el 19% restante corresponde al recuperado en superficie, con el método de inyección cíclica 2x10e7 moles de CO₂ lo que representa el 87% de almacenamiento y el 13% restante al recuperado y con el método de inyección WAG de 2,6x10e7 moles de CO₂ que representa el 47.5% almacenado y el 52.5% recuperado en superficie; de esta manera, se demuestra que en esta investigación el barrido del petróleo va en relación con la cantidad de CO₂ que se encuentra almacenado en el reservorio y por ende el factor de recobro aumenta.
- El comportamiento de la curva de saturación de petróleo en cada uno de los métodos (inyección continua, cíclica y WAG) se observa una tendencia decreciente debido al aumento en la producción de crudo. Analizando las curvas de saturaciones, se comprueba que existe un mejor desplazamiento o barrido de hidrocarburo cuando se inyecta de forma alternada de agua y gas (WAG), ya que la saturación de petróleo pasa del 77% al 30% desde el año 2018 al 2040. En cambio, en el método de inyección cíclica de CO₂ la saturación del petróleo pasa del 77% al 32%, al igual que en el método de inyección continua de CO₂.

5.2 RECOMENDACIONES

- Utilizar el método de inyección WAG en la arena T inferior del campo Shushufindi-Bloque 57 para incrementar la vida productiva de los pozos con bajo aporte y así considerar y mantener la producción hasta el año 2040; además, se sugiere de manera técnica aplicar 6 ciclos de inyección alterna de agua y gas, para aprovechar la alta producción de agua que generan los pozos existentes en el campo y durante el transcurso de la inyección de agua almacenar una cantidad máxima aproximada del 7,6x10e8 moles de CO₂.
- Al inicio del proyecto de recuperación mejorada, se debe analizar la disponibilidad necesaria del dióxido de carbono para que la inyección de los tapones de gas se pueda ejecutar sin contratiempos en los métodos de inyección continua, cíclica y WAG, es decir evaluar la capacidad de la fuente de CO₂ para mantener un suministro constante durante la vida útil del proyecto.
- Realizar un análisis técnico económico tomando en cuenta todos los factores involucrados en los procesos de recuperación mejorada que permita determinar la viabilidad y factibilidad del proyecto.
- Crear un programa para la captura y almacenamiento del CO₂ en las facilidades de superficie para alcanzar la cantidad requerida de gas que es factible inyectar y/o desplazar en los pozos; además, considerar los criterios de arreglos de pozo inyectores para garantizar una alta eficiencia de barrido areal y vertical en el yacimiento, dependiendo del método de recuperación que se vaya a utilizar.
- Ejecutar un monitoreo continuo de la inyección de CO₂ para evaluar el comportamiento del yacimiento y garantizar la eficiencia del proceso, dentro de este contexto se pueden utilizar técnicas como el monitoreo de presiones, temperaturas y el análisis de muestras de fluidos para evaluar la distribución y movilidad del CO₂ en el yacimiento ya que estas consideraciones permitirán realizar ajustes en tiempo real y optimizar la inyección.

REFERENCIAS BIBLIOGRÁFICAS

- Abdulla, M. M. H. I., & Pokharel, S. (2022). Analytical models for predicting oil recovery from immiscible CO2 injection: A literature review. *Journal of Petroleum Science* and Engineering, 219, 111131. https://doi.org/10.1016/j.petrol.2022.111131
- Alquicira, M. (2018). Potencial del CO2 como método de recuperación mejorada de hidrocarburos en México.
- Ameli, F., Moghaddam, S., & Shahmarvand, S. (2023). Introduction to gas flooding technique: fundamentals and applications. In *Gas Injection Methods* (pp. 1–43). Elsevier. https://doi.org/10.1016/B978-0-12-822302-4.00008-9
- Baby, P., Rivadeneira, M., & Barragán, R. (2014). La Cuenca Oriente: Geología y petróleo (P. Baby, M. Rivadeneira, & R. Barragán, Eds.). Institut français d'études andines. https://doi.org/10.4000/books.ifea.2971
- Bachu, S., Bonijoly, D., Bradshaw, J., Burruss, R., Holloway, S., Christensen, N. P., & Mathiassen, O. M. (2007). CO2 storage capacity estimation: Methodology and gaps. *International Journal of Greenhouse Gas Control*, 1(4), 430–443. https://doi.org/10.1016/S1750-5836(07)00086-2
- Barker, R., Hua, Y., & Neville, A. (2017). Internal corrosion of carbon steel pipelines for dense-phase CO 2 transport in carbon capture and storage (CCS) a review. *International Materials Reviews*, 62(1), 1–31. https://doi.org/10.1080/09506608.2016.1176306
- Behnoudfar, P., Rostami, A., & Hemmati-Sarapardeh, A. (2018). Miscible Gas Injection
 Processes. In *Fundamentals of Enhanced Oil and Gas Recovery from Conventional* and Unconventional Reservoirs (pp. 101–138). Elsevier. https://doi.org/10.1016/B978-0-12-813027-8.00004-7
- Espín, M., & Salas, D. (2021). Diseño de un plan piloto para la implementación de un método químico de recuperación mejorada (EOR) en la arena U inferior del campo Shushufindi Bloque 57.

- Gao, C., Li, X., Guo, L., & Zhao, F. (2013). Heavy oil production by carbon dioxide injection. *Greenhouse Gases: Science and Technology*, 3(3), 185–195. https://doi.org/10.1002/ghg.1346
- Gaona, A. (2019). Estudio para la optimización de la producción mediante análisis nodal en pozos con sistemas BES del Bloque 57.
- Guo, J.-X., Huang, C., Wang, J.-L., & Meng, X.-Y. (2020). Integrated operation for the planning of CO2 capture path in CCS–EOR project. *Journal of Petroleum Science* and Engineering, 186, 106720. https://doi.org/10.1016/j.petrol.2019.106720
- Hasanzadeh, M., Izadpanahi, A., & Naghizadeh, A. (2023). Carbon dioxide huff-n-puff. In *Gas Injection Methods* (pp. 171–198). Elsevier. https://doi.org/10.1016/B978-0-12-822302-4.00007-7
- Hemmati-Sarapardeh, A., Ghazanfari, M.-H., Ayatollahi, S., & Masihi, M. (2016). Accurate determination of the CO₂ -crude oil minimum miscibility pressure of pure and impure CO₂ streams: A robust modelling approach. *The Canadian Journal of Chemical Engineering*, 94(2), 253–261. https://doi.org/10.1002/cjce.22387
- Jahangiri, H. R., & Zhang, D. (2011). Optimization of the Net Present Value of Carbon Dioxide Sequestration and Enhanced Oil Recovery. All Days. https://doi.org/10.4043/21985-MS
- Jami, J., & Ruíz, J. (2022). Evaluación del proyecto de inyección de agua mediante la implementación del modelo de Craig, Geffen y Morse en la arena Ui Zona Norte del campo Shushufindi.
- Junior, A. N., Queiroz, G. N., Godoy, M. G., Cardoso, V. da S., Cedrola, S. M. L., Mansoldo, F. R. P., Firpo, R. M., Gomes Paiva, L. M., Sohrabi, M., & Vermelho, A. B. (2023). Assessing EOR strategies for application in Brazilian pre-salt reservoirs. *Geoenergy Science and Engineering*, 223, 211508. https://doi.org/10.1016/j.geoen.2023.211508
- Khoshsima, A., Sedighi, M., & Mohammadi, M. (2023). Enhanced oil recovery by water alternating gas injection. In *Gas Injection Methods* (pp. 295–316). Elsevier. https://doi.org/10.1016/B978-0-12-822302-4.00001-6

- Korre, A., Durucan, S., Shi, J. Q., Syed, A., Govindan, R., Hannis, S., Williams, J., Kirby, G., & Quinn, M. (2013). Development of Key Performance Indicators for CO2 Storage Operability and Efficiency Assessment: Application to the Southern North Sea Rotliegend Group. *Energy Procedia*, 37, 4894–4901. https://doi.org/10.1016/J.EGYPRO.2013.06.400
- León, A., & Samaniego, F. (2015). Inyección de CO2 en condiciones miscibles en el yacimiento naturalmente fracturado Artesa. *Ingeniería Petrolera*, *55*(10), 571–607.
- Massarweh, O., & Abushaikha, A. S. (2022). A review of recent developments in CO2 mobility control in enhanced oil recovery. *Petroleum*, 8(3), 291–317. https://doi.org/10.1016/j.petlm.2021.05.002
- Metz, B., Davidson, O., de Coninck, H., Loos, M., & Meyer, L. (2005). Carbon Dioxide Capture and Storage. https://www.ipcc.ch/report/carbon-dioxide-capture-andstorage/
- Moghadasi, R., Rostami, A., & Hemmati-Sarapardeh, A. (2018). Enhanced Oil Recovery Using CO2. In Fundamentals of Enhanced Oil and Gas Recovery from Conventional and Unconventional Reservoirs (pp. 61–99). Elsevier. https://doi.org/10.1016/B978-0-12-813027-8.00003-5
- Morillo, C. (2019). Desarrollo del mapa de presiones de la Arena T del campo Shushufindi, mediante el análisis de pruebas de presión.
- Noruzi, Y., & Sharifi, M. (2023). Cyclic gas injection. In *Gas Injection Methods* (pp. 45–88). Elsevier. https://doi.org/10.1016/B978-0-12-822302-4.00010-7
- Peck, W. D., Azzolina, N. A., Ge, J., Bosshart, N. W., Burton-Kelly, M. E., Gorecki, C. D., Gorz, A. J., Ayash, S. C., Nakles, D. v., & Melzer, L. S. (2018). Quantifying CO2 storage efficiency factors in hydrocarbon reservoirs: A detailed look at CO2 enhanced oil recovery. *International Journal of Greenhouse Gas Control*, 69, 41–51. https://doi.org/10.1016/J.IJGGC.2017.12.005
- Pomar-Castromonte, R., Ingol-Blanco, E., Santos, J., & Santa-Cruz, S. (2021). Analytical and numerical modeling for the assessment of CO2 storage in the Pariñas geological formation - Talara, Peru. *International Journal of Greenhouse Gas Control*, 110, 103446. https://doi.org/10.1016/J.IJGGC.2021.103446

- Ramos, G. (2018). Modelo de confiabilidad para sistemas de levantamiento artificial con bombas eléctrico sumergibles del campo Shushufindi Bloque 57.
- Safaei, A., Bagheri, M., Kazemzadeh, Y., & Riazi, M. (2023). Carbon dioxide miscible flooding. In *Gas Injection Methods* (pp. 133–169). Elsevier. https://doi.org/10.1016/B978-0-12-822302-4.00003-X
- Sánchez, D., & Sánchez, T. (2021). Evaluación técnica-económica de los proyectos piloto de inyección de agua implementados en el yacimiento U inferior del campo Shushufindi, estaciones central y norte, durante el periodo 201-2020.
- Santamaría, C. (2018). Recuperación mejorada de petróleo mediante la inyección de Dióxido de Carbono Antropogénico.
- Shen, Z., & Sheng, J. J. (2018). Experimental and numerical study of permeability reduction caused by asphaltene precipitation and deposition during CO2 huff and puff injection in Eagle Ford shale. *Fuel*, 211, 432–445. https://doi.org/10.1016/j.fuel.2017.09.047
- Sonke, J., Bos, W. M., & Paterson, S. J. (2022). Materials challenges with CO2 transport and injection for carbon capture and storage. *International Journal of Greenhouse Gas Control*, 114, 103601. https://doi.org/10.1016/j.ijggc.2022.103601
- Syed, F. I., Muther, T., Van, V. P., Dahaghi, A. K., & Negahban, S. (2022). Numerical Trend Analysis for Factors Affecting EOR Performance and CO2 Storage in Tight Oil Reservoirs. *Fuel*, *316*, 123370. https://doi.org/10.1016/J.FUEL.2022.123370
- Wang, L., Tian, Y., Yu, X., Wang, C., Yao, B., Wang, S., Winterfeld, P. H., Wang, X., Yang, Z., Wang, Y., Cui, J., & Wu, Y.-S. (2017). Advances in improved/enhanced oil recovery technologies for tight and shale reservoirs. *Fuel*, 210, 425–445. https://doi.org/10.1016/j.fuel.2017.08.095
- Wang, Q., Shen, J., Lorinczi, P., Glover, P., Yang, S., & Chen, H. (2021). Oil production performance and reservoir damage distribution of miscible CO2 soakingalternating-gas (CO2-SAG) flooding in low permeability heterogeneous sandstone reservoirs. *Journal of Petroleum Science and Engineering*, 204, 108741. https://doi.org/10.1016/j.petrol.2021.108741

- Yáñez, E., Ramírez, A., Núñez-López, V., Castillo, E., & Faaij, A. (2020). Exploring the potential of carbon capture and storage-enhanced oil recovery as a mitigation strategy in the Colombian oil industry. *International Journal of Greenhouse Gas Control*, 94, 102938. https://doi.org/10.1016/j.ijggc.2019.102938
- Yu, W., Lashgari, H. R., Wu, K., & Sepehrnoori, K. (2015). CO2 injection for enhanced oil recovery in Bakken tight oil reservoirs. *Fuel*, 159, 354–363. https://doi.org/10.1016/j.fuel.2015.06.092
- Zhao, X., & Liao, X. (2012). Evaluation Method of CO2 Sequestration and Enhanced Oil Recovery in an Oil Reservoir, as Applied to the Changqing Oilfields, China. *Energy* and Fuels, 26(8), 5350–5354. https://doi.org/10.1021/EF300783C

ANEXO A

Anexo A1. RESULTADOS DEL WINPROP

Dif. Lib. Calc.

Figura 54. GOR de la prueba de liberación diferencial (CMG, 2015).

Dif. Lib. Calc.

Figura 55. Viscosidades de la arena T inferior (CMG, 2015).

CO2 : Swelling Calc.

Figura 56. Presión de saturación de la inyección de CO₂ (CMG, 2015).

P-T Diagram

Figura 57. Diagrama de fases de la arena T inferior (CMG, 2015).

ANEXO B

Anexo B1. EVENTOS DE LOS MÉTODOS DE RECUPERACIÓN EN LA LÍNEA DEL TIEMPO

	De ourrent liteme	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	
#	Recurrent items	սևսև	սորորո	սորորո	ահորութ	ահորոր	ահորոր	ահորոր	սհորոր	ահորություն	ահորոր	սևսևսևս	ահորոր	ահահահա	սորորո	սորորո	ահորոր	ահորություն	ահորութ	ահորդ	վուհուր	սորորո	ուսեսես	ահորո	1
	韋 I/O controls	Ŷ																						STOP	
	Σ Numerical	¢																						1	
	🗮 Grid	0																						1	1
	🔝 Dates	(333333333										,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,												x <mark>></mark>	1
	Wells (7)																								
1	• SSF-013	₩																						1 1]
2	• SSF-017	¥																						2	
3	• SSF-028	*																						3	
4	• SSF-032	*																						4	-
5	• SSF-037	*																						5	1
6	• SSF-039	*																						6	í.
7	 SSF-047 	*																						7	1
					-																				
•	Vvell constraints di	efinition			— Pri	oduction	mode																		
	Events				- Inj	ection of	water																		
	✤ Perforations				— Inj	ection of	gas, solv	ent or cy	cling																

Figura 58. Línea de tiempo de los eventos del método de producción mediante el flujo natural (CMG, 2015).

Tim	e-Line View of Recurrent Dat	a																					—	٥
#	Recurrent Items	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040
		ուսեսես	ահորոր	սևսևսևս	ահորոր	սհորդո	ահորոր	ահորհոր	ահորոր	ահորոր	ահահահա	որորո	սիսիսիս	սհորդո	ահորություն	ահահահա	ահորոր	ահորոր	ահորոր	ահահահա	ահորոր	بايتليتلين	ulululu	ulululu Istop
	Z I/O controls	Þ																					<	
	Σ Numerical	¢																						
	👬 Grid	¢																						
	📰 Dates	000000000000000000000000000000000000000		20202222222	(20000000000000000000000000000000000000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		\$2000000000		(2003)2020	\$22022222222	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			\$0303333333	\$22022222222	(2002)2020					*******	, , , , , , , , , , , , , , , , , , ,	×
	Wells (10)																							
1	• SSF-013	*																						H
2	• SSF-017	*																						
3	• SSF-028	*																						
4	• SSF-032	*																						H
5	• SSF-037	*																						_
6	• SSF-039	*																						1
7	• SSF-047	*																						-
B	ø SSF-CO2-I1			*																				J
9	ø SSF-CO2-12			*																				-
0	ø SSF-W-I	*																						1
•	 Well constraints def Events Perforations 	inition			– Pro Inje – Inje – Auto	duction r ction of v ction of <u>c</u> o-drill mo	node vater jas, solve ode	ent or cycl	ing															

Figura 59. Línea de tiempo de los eventos del método de producción mediante inyección continua de CO₂ (CMG, 2015).

#	Recurrent Items	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	T
			ulululu	Julululu	Julululu	ահահահա	ulululu	Julululu	վահահահա	بليبليتلين	Julululu	ահորություն	hilululu	Julululu	ահորոր	Julululu	ահորոր	ահահահա	hininin	ահորոր	ահուրությո	ահահունո	վահոհոր	ulululu ISTOP	4
	Z I/O controls	P																					<	1	-
	Σ Numerical	þ																						I	
	👯 Grid	þ																						1	
	📰 Dates		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		\$22022222222	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	******		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		******	\$222222222222		000000000	******	∞	
	Wells (10)																								
1	• SSF-013	*		**	***			**																1 1	1
2	• SSF-017	*		•	•			•																2	1
3	• SSF-028	*		**				**																3	ĵ.
4	• SSF-032	*		•				**																4	,
5	• SSF-037	*						**																5	į.
6	• SSF-039	*		***				***																6	į.
7	 SSE-047 	*		•				~~																7	1
. 8	Ø SSE-C02-I1	-		* *	• •	۰۰۰ م ۱	•	• •	••••••••••••••••••••••••••••••••••••••															8	ĵ.
0	a eer coala			× ×	• •	~		~ ~																9	j
9	>> 33F-CU2-12	*		• •		~	-	* *	•															10	ď.
10	Ø 88F-W-I			•	• •	•	>	•	• •															1 10	
•	🔸 🔶 Well constraints def	inition			— Р	oductior	ı mode																		
	♦ Events				— In	jection o	fwater																		
	* Perforations				— In	jection o	fgas, so	lvent or c	ycling																
					At	uto-drill n	node		-																

Figura 60. Línea de tiempo de los eventos del método de producción mediante inyección cíclica de CO₂ (CMG, 2015).

VO controls Numerical Orid Dates SSF-013 SSF-017 SSF-028	2018 2019		021 2022 2	2023 2024 	2025	2026	2027 20	28 2029 	2030	2031	2032 lll	2033 lll	2034 	2035	2036	2037	2038	2039	2040 JSTOP
//O controls Numerical Grid Dates Is (10) SSF-013 SSF-017 SSF-028																			STOP
Numerical Grid Dates Is (10) SSF-013 SSF-017 SSF-028				300000000000000000000000000000000000000	000000000	2022222222222													
Grid Dates Is (10) SSF-013 SSF-017 SSF-028					000000000000000000000000000000000000000														1
Dates Is (10) SSF-013 SSF-017 SSF-028															1				
s (10) SSF-013 SSF-017 SSF-028	*										çannaa	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			********	(33333333333	000000000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	x >
SSF-013 SSF-017 SSF-028	*																		
SSF-017 SSF-028	*																		- 1
SSF-028	*																		2
																			1 3
SSF-032	*																		
SSF-037	*																		 €
SSF-039	*																		<mark>т</mark> е
SSF-047	*																		- 7
SSF-CO2-I1		* • •	• • • •			•													3
SSF-CO2-12		* → →	• • • •			•													1 1
SSF-W-I	*	• • •	• • • •			•													<mark>-</mark> 10
Wall constraints d	lefinition		Production m	ode															
Events			Injection of w	vater															
Perforations			Injection of a	ias, solvent or	cycling														
			Auto-drill mod	ide	-,9														
P S S S S S S S S S S S S S S S S S S S	/ell constraints o vents erforations	/ell constraints definition vents erforations	/ell constraints definition vents erforations	/ell constraints definition Production n vents Injection of v erforations Auto-drill mo	/ell constraints definition Production mode vents Injection of water erforations Injection of gas, solvent or Auto-drill mode	/ell constraints definition Production mode vents Injection of water erforations Injection of gas, solvent or cycling Auto-drill mode	/ell constraints definition Production mode vents Injection of water erforations Auto-drill mode	/ell constraints definition Production mode vents Injection of water erforations Auto-drill mode	r-vv-1 Production mode vents Injection of water erforations Injection of gas, solvent or cycling Auto-drill mode	/ell constraints definition Production mode vents Injection of water erforations Injection of gas, solvent or cycling Auto-drill mode		r-vv-1 /ell constraints definition vents Injection of water erforations Injection of gas, solvent or cycling	Image: Provential state	/ell constraints definition Production mode vents Injection of water enforations Injection of gas, solvent or cycling Auto-drill mode	r-vv-1 /ell constraints definition Production mode vents Injection of water erforations Injection of gas, solvent or cycling Auto-drill mode	r-vr-1 /ell constraints definition Production mode vents Injection of water erforations Injection of gas, solvent or cycling Auto-drill mode	r-vv-1 Production mode vents Injection of water erforations Injection of gas, solvent or cycling Auto-drill mode	r-vr-1 /ell constraints definition Production mode vents Injection of water erforations Injection of gas, solvent or cycling Auto-drill mode	Image: Production mode vents Injection of water erforations Injection of gas, solvent or cycling Auto-drill mode

Figura 61. Línea de tiempo de los eventos del método de producción mediante inyección alternada de agua y gas (WAG) (CMG, 2015).