#### UNIVERSIDAD ESTATAL PENÍNSULA DE SANTA ELENA



# FACULTAD DE CIENCIAS DE LA INGENIERÍA CARRERA DE INGENIERÍA EN PETRÓLEO

"ESTUDIO PARA LA OPTIMIZACIÓN DE SISTEMAS DE LEVANTAMIENTO ARTIFICIAL PARA LA PRODUCCIÓN DE PETRÓLEO EN POZOS DE LA ZONA CENTRAL DEL CAMPO ANCÓN-PROVINCIA DE SANTA ELENA"

PROYECTO PARA LA OBTENCIÓN DEL TÍTULO DE INGENIERO EN PETRÓLEO.

JENNY PATRICIA GUALE RICARDO.

SANTA ELENA, JULIO 2013

# UNIVERSIDAD ESTATAL PENÍNSULA DE SANTA ELENA

FACULTAD DE CIENCIAS DE LA INGENIERÍA
ESCUELA DE INGENIERÍA EN PETRÓLEO.
CARRERA DE INGENIERÍA EN PETRÓLEO

"ESTUDIO PARA LA OPTIMIZACIÓN DE SISTEMAS DE LEVANTAMIENTO ARTIFICIAL PARA LA PRODUCCIÓN DE PETRÓLEO EN POZOS DE LA ZONA CENTRAL DEL CAMPO ANCÓN-PROVINCIA DE SANTA ELENA"

#### TESIS DE GRADO

Previa a la obtención del Título de:

### INGENIERO EN PETRÓLEO

AUTOR: JENNY PATRICIA GUALE RICARDO TUTOR: INGENIERO CARLOS PORTILLA LAZO

> LA LIBERTAD – ECUADOR 2013-2014

#### APROBACIÓN DEL TUTOR

Como Tutor de la tesis: "ESTUDIO PARA LA OPTIMIZACIÓN DE SISTEMAS DE LEVANTAMIENTO ARTIFICIAL PARA LA PRODUCCIÓN DE PETRÓLEO EN POZOS DE LA ZONA CENTRAL DEL CAMPO ANCÓN-PROVINCIA DE SANTA ELENA", desarrollada por la estudiante Srta. Jenny Patricia Guale Ricardo egresada de la Carrera de Ingeniería en Petróleo, Facultad de Ciencias de la Ingeniería de la Universidad Estatal Península de Santa Elena, previo a la obtención del Título de Ingeniero en Petróleo, me permito declarar que luego de haber dirigido, estudiado y revisado, apruebo en su totalidad este trabajo de investigación.

Atentamente,

ING. CARLOS PORTILLA LAZO TUTOR DE TESIS

#### **DECLARACIÓN**

Yo, Jenny Patricia Guale Ricardo, declaro bajo juramento que el trabajo descrito es de mi autoría; que no ha sido previamente presentada para ningún grado o calificación profesional; y que he consultado las referencias bibliográficas que se incluyen en este documento.

A través de la presente declaración cedo mis derechos de propiedad intelectual correspondiente a este trabajo, a la Universidad Estatal Península de Santa Elena, según lo establecido por la ley de Propiedad intelectual, por su reglamento y por la normativa institucional vigente.

Jenny Patricia Guale Ricardo

#### **AGRADECIMIENTO**

Esta tesis, clara expresión de esfuerzo y sacrificio, se concreta con la oportuna asistencia de seres entrañables, a quienes, exteriorizo mi permanente gratitud; ellos son:

Dios, quien con su amor infinito me dio luz para guiarme y fortaleza para sostenerme.

Mis padres y hermanos, porque estuvieron y están presentes con su apoyo incondicional en todo lo emprendido en mi carrera hasta culminarla con éxito.

Ingeniero Alamir Álvarez Director de la Carrera por su colaboración para la elaboración de este trabajo de grado.

Ing Carlos Portilla por su apoyo y enseñanza de asesoría para la culminación de la tesis.

La empresa Pacifpetrol, y en ella el Ing. Andrés Fraga por las facilidades, asesoría y conocimientos impartidos; y, al personal de trabajo que también se sumó para el exitoso desarrollo demandado por la tesis.

Jenny Guale Ricardo

#### **DEDICATORIA**

A mis padres, Jorge Guale Tomalá y Betty Ricardo Malavé, por sus consejos, por su confianza, paciencia y amor hacia mí, por ser admirable su ejemplo a seguir, con filial emoción y cariño, dedico este complejo pero al fin logrado fruto.

Definitivamente, creo que si Dios me sigue bendiciendo ellos estarán presentes en mis futuros proyectos, como también seguirán prestándome su apoyo incondicional.

Jenny Guale Ricardo

### TRIBUNAL DE GRADO

| Ing. Ramón Muñoz Suárez<br>DECANO DE LA FACULTAD DE<br>CIENCIAS DE LA INGENIERÍA | Ing. Alamir Álvarez Loor<br>DIRECTOR DE LA ESCUELA DI<br>INGENIERÍA EN PETRÓLEO |
|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Ing. Carlos Portilla Lazo PROFESOR TUTOR                                         | Ing. Tarquino López Cadena<br>PROFESOR DE ÁREA                                  |
|                                                                                  |                                                                                 |

## ÍNDICE GENERAL

| ÍNDI  | ICE GENERAL                                                                                | VIII  |
|-------|--------------------------------------------------------------------------------------------|-------|
| ANE   | XOS                                                                                        | XII   |
| ÍNDI  | ICE DE FIGURAS                                                                             | XIII  |
| ÍNDI  | ICE DE TABLAS                                                                              | XIV   |
| ABR   | EVIATURAS                                                                                  | XVI   |
| SIMI  | BOLOGÍA                                                                                    | XVII  |
| RESU  | UMEN                                                                                       | XVIII |
| INTF  | RODUCCIÓN                                                                                  | 1     |
| CAP   | ÍTULO I DESCRIPCIÓN GEOLÓGICA DEL CAMPO AN                                                 | ICÓN  |
| 1.1   | Aspectos generales.                                                                        | 4     |
| 1.1.1 | Ubicación geográfica del Campo.                                                            | 4     |
| 1.1.2 | Historia de la exploración del Bloque 2.                                                   | 5     |
| 1.2   | Geología.                                                                                  | 6     |
| 1.2.1 | Estructura geológica.                                                                      | 6     |
| 1.2.2 | Litología de las Formaciones                                                               | 6     |
| 1.3   | Datos históricos.                                                                          | 10    |
| 1.3.1 | Historia del desarrollo del Campo.                                                         | 10    |
| 1.4   | Yacimiento                                                                                 | 11    |
| 1.4.1 | Propiedades de los Fluidos                                                                 | 12    |
| 1.4.2 | Propiedades de la Roca.                                                                    | 13    |
| 1.4.3 | Reservas                                                                                   | 14    |
|       | TTULO II. DESCRIPCIÓN DE LOS SISTEMAS DE LEVA<br>NTO ARTIFICIAL EMPLEADOS EN EL CAMPO ANCÓ |       |
| 2.1   | Descripción                                                                                |       |
| 2.2   | Método de extracción por Herramienta Local                                                 |       |
| 2.2.1 | Procedimiento operativo                                                                    | 19    |
| 222   | Problemas operacionales                                                                    | 19    |

| 2.3   | Método de extracción por Pistoneo o Swab                       | 20  |
|-------|----------------------------------------------------------------|-----|
| 2.3.1 | Equipo de superficie                                           | 20  |
| 2.3.2 | Equipo de subsuelo                                             | 20  |
| 2.3.3 | Procedimiento operativo.                                       | 21  |
| 2.3.4 | Problemas operacionales de Swab                                | 22  |
| 2.4   | Método de extracción por Bombeo Mecánico                       | 22  |
| 2.4.1 | Equipo de superficie                                           | 23  |
| 2.4.2 | Equipo de subsuelo                                             | 23  |
| 2.4.3 | Equipo de transmisión de movimiento.                           | 24  |
| 2.4.4 | Procedimiento operativo.                                       | 24  |
| 2.4.5 | Problemas operacionales                                        | 25  |
| 2.5   | Método de extracción por Gas Lift.                             | 32  |
| 2.5.1 | Equipo de superficie.                                          | 33  |
| 2.5.2 | Equipo de subsuelo                                             | 33  |
| 2.5.3 | Procedimiento operativo.                                       | 34  |
| 2.5.4 | Problemas operacionales.                                       | .34 |
| 2.5.5 | Pozos actualmente intervenidos en el Campo Ancón por el método |     |
|       | de Gas Lift                                                    | 34  |
| 2.6   | Método de extracción por Plunger Lift                          | 35  |
| 2.6.1 | Procedimiento de operación                                     | 36  |
| 2.6.2 | Componentes de Plunger Lift.                                   | 37  |
| 2.6.3 | Problemas operacionales.                                       | 38  |
| 2.6.4 | Pozos actualmente intervenidos por el método de Plunger Lift   | 38  |
| 2.7   | Producción por método de Levantamiento Artificial en el Campo  | 39  |
| CAP   | ÍTULO III CONSIDERACIONES PARA SELECCIÓN DE UN                 |     |
| SIST  | EMA DE LEVANTAMIENTO ARTIFICIAL.                               |     |
| 3.1   | Descripción.                                                   | 42  |
| 3.2   | Características del pozo.                                      | 42  |
| 3.2.1 | Rango de profundidad                                           | 42  |
| 3.2.2 | Desviación de pozos                                            | 43  |

| 3.2.3 | Diámetros de casing                                            |
|-------|----------------------------------------------------------------|
| 3.3   | Características del fluido                                     |
| 3.3.1 | Fluidos viscosos                                               |
| 3.3.2 | Presencia de sólidos, arenas o sal libre                       |
| 3.3.3 | Fluidos parafínicos                                            |
| 3.3.4 | Fluidos corrosivos y escalas                                   |
| 3.4   | Características del yacimiento                                 |
| 3.4.1 | Limitación de sumergencia en la bomba                          |
| 3.4.2 | Manejo de gas                                                  |
| 3.4.3 | Limitaciones de temperaturas                                   |
| 3.4.4 | Limitaciones por altos volúmenes                               |
| 3.5   | Características operativas externas                            |
| 3.5.1 | Problemas climáticos                                           |
| 3.5.2 | Ubicación en zonas pobladas                                    |
| 3.5.3 | Posibilidad de control de fallas                               |
| 3.5.4 | Experiencia operativa disponible en el Campo                   |
| 3.5.5 | Fuentes de energía                                             |
| 3.5.6 | Logística disponible en el Campo                               |
| 3.6   | Ventajas y desventajas de Bombeo Mecánico                      |
| 3.7   | Consideraciones de diseño de Bombeo Mecánico49                 |
|       |                                                                |
| CAP   | ÍTULO IV SELECCIÓN DEL SISTEMA DE LEVANTAMIENTO                |
| ART   | IFICIAL A UTILIZAR EN EL PROYECTO DE OPTIMIZACIÓN              |
| 4.1   | Descripción de condiciones de los pozos51                      |
| 4.1.1 | Procedimiento para selección de pozos para cambio de sistema54 |
| 4.1.1 | .1 Restauraciones de nivel de fluido con muestreador54         |
| 4.1.1 | .2 Construcción de curvas de restauración de nivel             |
| 4.2   | Condiciones de superficie                                      |
| 4.2.1 | Descripción de tipos y condiciones de cabezales                |
| 4.2.2 | Distancia a tanques o subestaciones                            |

# CAPÍTULO V. ANÁLISIS TÉCNICO DE POZOS CANDIDATOS PARA CAMBIO DE SISTEMA

| 5.1   | Criterio inicial de selección de pozos                           |   |
|-------|------------------------------------------------------------------|---|
| 5.1.1 | Análisis tipo para un pozo candidato seleccionado61              |   |
| 5.1.2 | Análisis de curva de restauración de nivel                       |   |
| 5.1.3 | Análisis tipo para un pozo candidato no seleccionado             |   |
| 5.2   | Fórmulas para el cálculo de diseño de Bombeo Mecánico            |   |
| 5.3   | Pasos para calcular: cargas, esfuerzos, potencia, contrabalanceo |   |
|       | requerido y torque                                               |   |
| 5.4   | Simulación e interpretación del Software QRod77                  |   |
| 5.5   | Implementación del proyecto                                      |   |
| 5.6   | Mapas de ubicación de los pozos seleccionados                    |   |
| 5.7   | Plan de implementación del proyecto                              |   |
| 5.7.1 | Mapa para el plan de implementación del proyecto en etapas84     | _ |
| CAP   | ÍTULO VI ANÁLISIS ECONÓMICO                                      |   |
| 6.1   | Procedimiento para Análisis Económico87                          |   |
| 6.2   | Pronóstico de Ingresos                                           |   |
| 6.3   | Pronóstico de Inversiones                                        |   |
| 6.4   | Pronóstico de Gastos por SW                                      |   |
| 6.5   | Pronóstico de Gastos de BM                                       |   |
| 6.6   | Resolución del flujo de caja de la situación actual94            |   |
| 6.6.1 | Partición del proyecto en períodos                               |   |
| 6.6.2 | Flujo de caja sin implementación del proyecto                    |   |
| 6.6.3 | Flujo de caja implementando el proyecto                          |   |
| 6.6.4 | Comparación entre flujos de caja                                 | 2 |
| 6.6.5 | Análisis comparativos de flujos de caja                          | 5 |
| CAP   | ÍTULO VII CONCLUSIONES Y RECOMENDACIONES                         |   |
| 7.1   | Conclusiones                                                     | 9 |
| 7.2 F | Recomendaciones11                                                | 0 |

| BIBLIOGI    | <b>RAFÍA</b> 112                                                               |
|-------------|--------------------------------------------------------------------------------|
| ANEXOS      |                                                                                |
|             | DIAGRAMA DE COMPLETACIÓN DE LOS SISTEMA DE<br>AMIENTO ARTIFICIAL DEL BLOQUE 2. |
| Anexo 1.1   | Diagrama de completación de Herramienta Local116                               |
| Anexo 1.2   | Diagrama de completación de Swab o Pistoneo                                    |
| Anexo 1.2.  | 1 Diagrama de completación con stading valve fijo                              |
| Anexo 1.2.2 | 2 Diagrama de completación de Swab con cruceta118                              |
| Anexo 1.3   | Diagrama de completación de Bombeo Mecánico119                                 |
| Anexo 1.4   | Diagrama de completación de Gas Lift120                                        |
| Anexo 1.5   | Diagrama de completación de Plunger Lift121                                    |
| Anexo 1.5.  | 1 Diagrama de Plunger Lift (Asistido)                                          |
| Anexo 1.5.2 | 2 Diagrama de Plunger Lift                                                     |
| Anexo 1.5.3 | 3 Diagrama de Plunger Lift Autónomo                                            |
|             | PLANILLAS DE DETALLE Y CARACTERÍSTICAS DEL<br>PARA CAMBIO DEL SISTEMA.         |
| Anexo 2.1   | Planilla del equipo de superficie del balancín portátil y                      |
|             | características                                                                |
| Anexo 2.2   | Planilla de equipo de fondo y características                                  |
| ANEXO II    | I. MODELO TIPO PARA CAMBIO DE SISTEMA.                                         |
| Anexo 3.1   | Resultados de un pozo candidato                                                |
| Anexo 3.2   | Diagrama de completación actual y futura131                                    |
| ANEXO IV    | V RESULTADOS DE RESTAURACIONES DE NIVEL134                                     |
|             | V. GASTOS DE OPERACIÓN DE SWAB Y BOMBEO                                        |
| MECÁNIO     |                                                                                |
| Anexo 5.1   | Sistema de levantamiento artificial de Bombeo Mecánico 149                     |
| Anexo 5.2   | Sistema de levantamiento artificial por Swab                                   |

# ÍNDICE DE FÍGURAS.

| Figura N° 1  | Ubicación geográfica del campo petrolero "Ing. Gustavo     |     |
|--------------|------------------------------------------------------------|-----|
|              | Galindo Velasco"                                           | 4   |
| Figura N° 2  | Primer pozo petrolero explotado en el Campo Ancón,         |     |
|              | ANC0001                                                    | 5   |
| Figura N° 3  | Columna estratigráfica del Bloque 2                        | 7   |
| Figura N° 4  | Curva de índice de declinación del Campo Ancón             | 10  |
| Figura N° 5  | Comportamiento histórico de producción del Campo Ancón.    | 11  |
| Figura N° 6  | Sistema de levantamiento artificial por Herramienta Local  | 18  |
| Figura N° 7  | Sistema de levantamiento artificial por Pistoneo o Swab    | 20  |
| Figura N° 8  | Sistema de levantamiento artificial por Bombeo Mecánico    | 22  |
| Figura N° 9  | Carta llena                                                | 26  |
| Figura N° 10 | ) Golpe de gas                                             | 29  |
| Figura N° 1  | l Carta de varilla rota                                    | 32  |
| Figura N° 12 | 2 Sistema de levantamiento artificial por Gas Lift         | .33 |
| Figura N° 13 | 3 Sistema de levantamiento artificial por Plunger Lift     | 35  |
| Figura N° 14 | 4 Producción porcentual del Campo Ancón                    | 40  |
| Figura N° 13 | 5 Equipo de wire line                                      | 55  |
| Figura N° 10 | 6 Curva de restauración de nivel de fluido                 | 56  |
| Figura N° 17 | 7 Tipo de cabezal apto para Bombeo Mecánico y capatción de | e   |
|              | gas                                                        | 57  |
| Figura N° 18 | 3 Cabezales de pozos de SW                                 | .57 |
| Figura N° 19 | O Cabezales de pozos de HL                                 | 58  |
| Figura N° 20 | ) Subestación                                              | 58  |
| Figura N° 2  | 1 Curva de restauración de un pozo seleccionado            | .62 |
| Figura N° 22 | 2 Curva de restauración de un pozo no seleccionado         | .64 |
| Figura N° 23 | 3 Relación Adimensional (F1/ SKr)                          | 71  |
| Figura N° 24 | 4 Relación Adimensional (F2/SKr)                           | .72 |
| Figura N° 25 | 5 Relación Adimensional (2T/S <sup>2</sup> Kr)             | .73 |
| Figura N° 20 | 6 Valor de ajuste (Ta) para corregir torque máximo para    |     |
|              | (Wr/SKr ≠0.3)                                              | .74 |

| Figura N° 27 | Relación Adimensional (F <sub>3.</sub> /Skr), para calcular la potencia del |
|--------------|-----------------------------------------------------------------------------|
|              | motor                                                                       |
| Figura N° 28 | Relación Adimensional (Sp/S), Gráfica para calcular la carrera              |
|              | efectiva del pistón                                                         |
| Figura N° 29 | Software QRod                                                               |
| Figura N° 30 | Interpretación del Software QRod77                                          |
| Figura N° 31 | Mapa Sección 6679                                                           |
| Figura N° 32 | Mapa Sección 6780                                                           |
| Figura N° 33 | Mapa Sección 7481                                                           |
| Figura N° 34 | Mapa Sección Tigre82                                                        |
| Figura N° 35 | Mapa de implementación del proyecto                                         |
| Figura N° 36 | Flujograma de evaluación económica del proyecto 88                          |
| Figura N° 37 | Programa GSP92                                                              |
| Figura N° 38 | Detalle de consumo del GSP                                                  |
| Figura N° 39 | Consumos mensuales de los sistemas a analizar para cambio de                |
|              | sistema94                                                                   |
| Figura N° 40 | Gastos mensuales de Bombeo Mecánico. Año 2012102                            |
| Figura N° 41 | Diagrama de indicadores de endeudamiento                                    |
| Figura N° 42 | Comportamiento del flujo de caja en la situación actual 105                 |
| Figura N° 43 | Comportamiento del flujo de caja en la campaña de                           |
|              | optimización106                                                             |
| Figura N° 44 | Comparación de flujos de caja107                                            |
|              |                                                                             |
|              | <b>4.2.4.</b>                                                               |
|              | ÍNDICE DE TABLAS                                                            |
| Tabla N° 1 C | oordenadas UTM y Coordenadas Geográficas5                                   |
| Tabla N° 2 F | actor volumétrico del Campo Ancón12                                         |
| Tabla N° 3 P | ropiedades de la roca del Campo Ancón14                                     |
| Tabla N° 4 F | Reservas del Campo Ancón                                                    |
| Tabla N° 5 P | ozos operativos de Gas Lift en el Campo Ancón35                             |
| Tabla N° 6 P | ozos operativos por el Método Plunger Lift-Diciembre 2012.38                |
| Tabla N° 7 P | roducción promedia diaria del Campo Ancón, año 201239                       |

| Tabla N° 8 Selección de sistema por levantamientos artificiales5         | 53             |
|--------------------------------------------------------------------------|----------------|
| Tabla N° 9 Calendario de swab                                            | 54             |
| Tabla N° 10 Restauración de nivel de fluido.                             | 56             |
| Tabla N° 11 Pozos actualmente operativos en Swab                         | 51             |
| Tabla N° 12 Resultados de restauración de nivel de un pozo seleccionado. | 52             |
| Tabla N° 13 Resultados de restauración de nivel de un pozo no            |                |
| seleccionado                                                             | 54             |
| Tabla N° 14 Datos de bombas y varillas                                   | 57             |
| Tabla N° 15 Datos de bombas y varillas $\epsilon$                        | 58             |
| Tabla N° 16 Tabla de resultados de pozos seleccionados para cambio de    |                |
| sistema                                                                  | 78             |
| Tabla N° 17 Cronograma para ejecución del proyecto                       | 33             |
| Tabla N° 18 Pronóstico de Ingresos                                       | 39             |
| Tabla N° 19 Listado de Inversión                                         | 90             |
| Tabla N° 20 Gastos mensuales de Swab (promedio 2012)9                    | <b>)</b> 1     |
| Tabla N° 21 Planilla de gastos de Swab del año 2012                      | )3             |
| Tabla N° 22 Pronóstico de gastos operativos por implementación de BM9    | <del>)</del> 3 |
| Tabla N° 23 Flujo de caja sin implementación del proyecto                | <del>)</del> 7 |
| Tabla N° 24 Flujo de caja implementando el proyecto                      | 00             |
| Tabla N° 25 Análisis comparativo de flujo de caja                        | 103            |
|                                                                          |                |

#### ABREVIATURAS.

ANC Ancón.

A/C Acero al carbono

**B.C.P** Bombas de cavidad progresiva

**BES** Bombeo Electrosumergible.

**BH** Bombeo Hidráulico.

**BM** Bombeo Mecánico.

**BPPD** Barriles de Petróleo por día.

**BSW** Basic sediment water.

**CAP** Contacto agua petróleo

**CSG** Casing

CM Carga Máxima.

CO<sub>2</sub> Dióxido de carbono

**CPB** Clay Pebble Beds.

**EUR** Enhanced Ultimate Recovery

**F** Formación.

**FY** Fluyente.

**GL** Gas Lift.

**GOR** Relación Gas Petróleo

**HL** Herramienta Local.

**IP** Índice de productividad

MMBLS Millones de Barriles.

**NB** Velocidad de Bombeo

**NE** Norte-Este.

**NL** Nivel de líquido.

**NP** Pozo no productivo

**PB** Passage Bed.

PH Potencial hidrógeno

**PL** Plunger lift.

**PT** Parado Transitorio.

**POES** Petróleo original in situ

**R** Reservas

r Inserción

T Tuberías

RWA o RHA Bomba de barril estacionario y anclaje superior

**SLA** Sistema de Levantamiento Artificial.

**TD** Total Depth.

**SCFD** Pies Cúbicos Estándar por Barriles de Almacenamiento

**STVF** Standing Valve Fijo.

SW Swab.

**UNCE** Unidad de Negocio Centro-Este.

UTM Sistema de Coordenadas Universal Transversal de Mercator

#### **SIMBOLOGÍA**

**API** American Petroleum Institute.

**βo** Factor volumétrico

**BY** Condiciones de yacimiento

**BN** Condiciones normales.

**D** Rata de declinación

u Viscosidad

**cp** Centipoise

**ρ** Densidad

**k** Permeabilidad

Sw Saturación de agua.

**Ø** Porosidad

**Qi** Caudal inicial

Qt Caudal de producción acumulada

r Índice de declinación

**So** Saturación de petróleo.

Sg Saturación de gas

t Tiempo

V Volumen

**ln** Logaritmo natural

#### RESUMEN

El propósito de la presente investigación se concreta en realizar un proceso de producción de petróleo exitosa al menor costo posible; para cuyo efecto, se requiere, previamente; desarrollar planes, establecer presupuestos considerando inversiones de capital y gastos operativos, cumplir con programas de ejecución, reducir costos, y manipular los hidrocarburos con responsabilidad ambiental.

La Empresa Pacifpetrol, objeto de estudio requiere reducir costos, en base a un proyecto de optimización que encuentre alternativas más rentables a las que actualmente se practican en el Campo Ancón.

Las causas del problema están en el alto costo operativo del sistema de levantamiento artificial por Swab debido al, alto consumo de combustible por las unidades de extracción (2 motores para cada unidad); altos costos de mantenimiento, insumos y lubricantes; vida útil corta de motores auxiliares por excesivas cargas de trabajo; mayor cantidad de operadores; deterioro o daño acelerado de herramientas; constantes servicios de pulling por fallas operacionales que afectan la integridad de la instalación del pozo. Son serios estos problemas que ocasionan pérdidas en horas por la parada obligada de cada unidad.

De esta manera, implementando este proyecto se logrará la disminución de costos operativos en la producción de petróleo y con mínimas afectaciones ambientales.

El Bombeo Mecánico (BM), fue seleccionado como alternativa al cambio de sistema, porque utiliza una unidad de superficie para transmitir movimiento a la bomba de subsuelo a través de una sarta de varillas; este método, es eficiente y más fácil de manejar gracias a su diseño; además el BM es uno de los métodos más utilizados en el Campo Ancón.

Previo los estudios pertinentes se mostrará una comparación de gastos e inversiones entre BM y Swab para la ilustración necesaria para establecer la factibilidad de emprender una campaña de cambios de sistema operativo.

El diseño, implementación y optimización del sistema permitirá reducir la cantidad de pozos que se intervienen mediante Swab alcanzando una mayor rentabilidad en el campo. De acuerdo al cambio de método artificial y a los estándares, y parámetros de referencia para la operación y resultados, se garantizarán mejores beneficios económicos.

#### INTRODUCCIÓN.

Las compañías operadoras encargadas a la exploración y producción de petróleo realizan continuamente grandes esfuerzos para optimizar sus sistemas de producción.

La producción de petróleo requiere levantar el fluido a la superficie. Esto se puede lograr gracias a la misma energía del yacimiento que expulsa los fluidos confinados dentro de sí (petróleo, gas y agua) de manera "surgente". Sin embargo, a medida que la presión del yacimiento declina, la producción del pozo decae hasta llegar a cero; en estos casos, es necesario suministrar energía externa que conduzca el petróleo a superficie.

Los Sistemas de Levantamiento Artificial proporcionan una flexibilidad extraordinaria en su instalación, capacidad y funcionamiento para cumplir una alta gama requerimientos de extracción.

En el país un gran número de pozos producen bajo diferentes métodos de Levantamiento Artificial. El reservorio cambia a medida que avanza su vida productiva. Las consecuencias se reflejan en el decremento de las tasas de producción. Se vuelve necesario el análisis de las condiciones de cada pozo para tomar decisiones que lleven a una mayor recuperación de petróleo al costo más bajo posible.

El presente proyecto tiene como lugar de estudio y aplicación el Bloque 2 del campo petrolero "Ing. Gustavo Galindo Velasco", actualmente administrado por Pacifpetrol S.A. y cuya ubicación es la península de Santa Elena, parroquia Ancón. La Empresa tiene como objetivo la optimización de la producción de petróleo para su posterior transferencia a la refinería La Libertad.

En el Campo Ancón se requiere un estudio de pozos de la Zona Central para optimizar los Sistemas de Levantamiento Artificial con miras a determinar la mejor alternativa técnica y económica. A continuación se explica, en breves capítulos, el proyecto.

CAPÍTULO I: Conocimiento del área geológica del Bloque 2; además, se detalla las propiedades de las rocas y fluidos de las formaciones, las litologías y características estructurales.

CAPÍTULO II: Descripción de cada uno de los Sistemas de Levantamiento Artificial empleados en el Campo, detallando: operación del equipo, problemas operacionales, ventajas, limitaciones y, su respectivo diagrama de completación.

CAPÍTULO III: Detalle de los parámetros de selección de pozos para cambio de sistema, es decir, las condiciones requeridas para que a un pozo se le pueda aplicar extracción por Bombeo Mecánico.

CAPÍTULO IV: Detalle del procedimiento efectuado para determinar las características de los pozos candidatos, niveles de fluido, restauración de nivel, reconocimientos de campo, etc.

CAPÍTULOS V-VI: Análisis técnico-económico de pozos candidatos para cambio de sistema, considerando que, para el análisis técnico se mencionará el criterio inicial de selección de pozos: análisis tipo para un pozo candidato seleccionado y, análisis tipo para un pozo candidato no seleccionado. Con respecto al análisis económico se realizará un programa de ejecución: listados de materiales, presupuestos actuales del equipo, sistema operativo en un futuro y, sus flujos de cajas respectivos.

CAPÍTULO VII: Finalmente, formulación de conclusiones y recomendaciones necesarias del estudio técnico-económico para que un futuro la aplicación de este proyecto sea factible y eficiente en la operación de extracción para lograr excelentes resultados.

# CAPÍTULO I DESCRIPCIÓN GEOLÓGICA DEL CAMPO ANCÓN

#### 1.1 Aspectos generales

#### 1.1.1 Ubicación geográfica del Campo.

El campo petrolero "Ing. Gustavo Galindo Velasco", se encuentra ubicado en el Bloque 2 de la península de Santa Elena en el sudeste de la provincia del Guayas. (Fig.1)

El bloque de producción de petróleo comprende 1200 km² de las cuales el 40% son costa afuera. En él se han perforado, desde principios del siglo pasado, aproximadamente 2882 pozos, los primeros pozos productores del Ecuador. El ANC0001 fue perforado en 1911 por la compañía inglesa ANGLO ECUADORIAN OILFIELDS Ltda. cerca de Anconcito, a una profundidad de 2116 pies, con una escasa producción de crudo al nivel de la Formación Socorro." *Informe de geología y yacimientos de Ancón, pag 4*".



Fig.1 Ubicación geográfica del campo petrolero "Ing. Gustavo Galindo Velasco".

Fuente: Pacifpetrol.

El Bloque 2 se encuentra limitado por las siguientes coordenadas geográficas ver Tabla N°1:

| PUNTO COORDE |            | DAS UTM  | COORDENADAS GEOGRÁFICAS |              |  |
|--------------|------------|----------|-------------------------|--------------|--|
| PUNTO        | Lat. N     | Long. E  | Lat. Sur                | Long. Oeste  |  |
| 1            | N9'751.000 | E515.000 | 2°15'8. 11"             | 80°51'53.51" |  |
| 2            | N9'747.000 | E515.000 | 2°17'17.8"              | 80°51'53.51" |  |
| 3            | N9'747.000 | E517.000 | 2°17'17.8"              | 80°50'48.65" |  |
| 4            | N9'751.000 | E517.000 | 2°15'8.11"              | 80°50'48.65" |  |

Tabla N° 1 Coordenadas UTM y Coordenadas Geográficas

Fuente: Pacifpetrol.

#### 1.1.2 Historia de la exploración del Bloque 2

En Ecuador se conoció sobre afloramientos naturales de petróleo desde los tiempos prehispánicos. Los indígenas y conquistadores utilizaban el petróleo como fuente iluminante, medicinas o para otras aplicaciones.

El inicio de la perforación se dió en 1911 cuando se perforó el primer pozo de petróleo del Ecuador perteneciente a la Península de Santa Elena (Fig. 2), por la compañía Anglo . La actividad petrolera en el área se incrementó y trajo nuevos descubrimientos como el Campo Tigre.

En 1961, los operadores suspendieron las actividades de perforación para solo concentrarse en la producción de las zonas desarrolladas del Campo.

Desde el añol 2002 la compañía Pacifpetrol pasó a operar el Campo hasta la actualidad. "Informe de geología y yacimientos de Ancón, pag 5".



Fig. 2 Primer pozo petrolero explotado en el Campo Ancón, ANC0001. Fuente: Pacifpetrol.

#### 1.2 Geología.

El área petrolera Ancón se encuentra ubicada en el "Levantamiento de Santa Elena" y comprende la secuencia sedimentaria del Cretácico al Terciario Inferior (Paleoceno – Eoceno), desarrollada sobre corteza oceánica.

El "Levantamiento de Santa Elena" se encuentra delimitado al Nor-Este por la falla regional de "La Cruz" que la separa de la cuenca de Progreso con sedimentación de edad Oligoceno-Plioceno.

#### 1.2.1 Estructura geológica.

De acuerdo a la interpretación de líneas sísmicas y correlación de perfiles eléctricos se elaboró el modelo estructural de la Península y se definieron los principales rasgos estructurales vinculados a los campos.

A grandes rasgos se puede decir que las secuencias, Cretácica y los niveles inferiores de la Formación Azúcar, experimentaron esfuerzos compresivos. Los niveles superiores de la Formación Azúcar y el Grupo Ancón fueron afectados por tectónicas de desplazamiento de rumbo; mientras que, los niveles altos del Grupo Ancón y la secuencia Neógena (Progreso, Golfo de Guayaquil) experimentó una tectónica distensiva.

El estado de esfuerzo transgresivo determinó la activación de distintos tipos de fallas; dependiendo de su orientación es posible encontrar fallas inversas normales al esfuerzo principal. Otras posibilidades son fallas de desplazamiento de rumbo, oblicuas a la compresión principal y fallas normales sub paralelas a dicha compresión principal.

#### 1.2.2 Litología de las Formaciones

A continuación se describen brevemente las principales características litológicas presentes en la Península (Fig. 3).

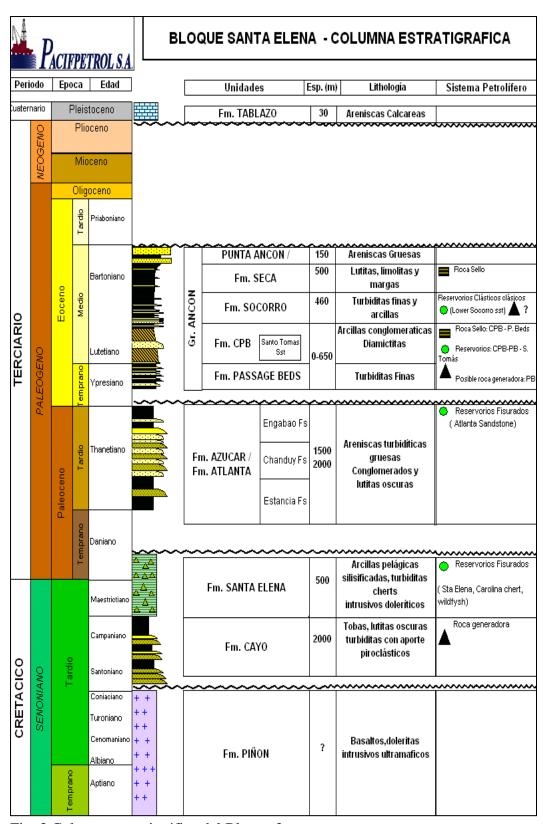



Fig. 3 Columna estratigráfica del Bloque 2

Fuente: Pacifpetrol.

#### • Formación Tablazo (Pleistoceno).

Son areniscas gruesas y calizas arenosas con bancos de conchillas. Son niveles de terraza marina de edad Pleistocena que descansan en fuerte discordancia erosiva (y angular) sobre las rocas cretácicas y paleógenas de la península de Santa Elena.

#### Grupo Ancón (Eoceno).

Este grupo de formaciones toma el nombre del campo petrolero de Ancón, comprende las rocas silicoclásticas y está compuesto por las siguientes formaciones: Formación Clay Pebble Beds, que contiene a su vez la arenisca Santo Tomás, Formación, Passage Beds, Formación Socorro y, Formación Seca.

#### • Formación Seca (Eoceno Medio).

Esta formación constituye la roca sello de los reservorios de la Formación Socorro en el campo Ancón, está constituida por arcillitas grises verdosas con raras intercalaciones de areniscas finas que hacia el techo obtienen un color amarillento rojizo.

#### • Formación Socorro (Eoceno Medio Temprano).

Comprende areniscas turbidíticas y pelitas que recubren la Formación Clay Pebble Beds, son de lutitas grises hasta negro y de areniscas turbidíticas delgadas verdosas.

#### • Formación CPB -Clay Pebble Beds (Eoceno Inferior).

Constituye una secuencia de matriz arcillosa, originada por el deslizamiento sinsedimentario del tipo de flujos de barro densos submarinos e interestratificado con turbiditas.

#### • Formación Santo Tomás.

Consiste de un banco de areniscas de potencias modestas conocida solamente en el subsuelo en el sector homónimo, en el extremo NE del campo petrolero de Ancón. Constituye en la culminación del ciclo turbidítico de la Formación Passage Beds.

#### • Formación Passage Bed PB-(Capas De Transición).

Esta constituida por duros estratos delgados de areniscas, que incluyen intercalaciones de areniscas calcáreas.

#### • Formación Atlanta (Paleoceno).

Es el principal reservorio del campo Ancón, reconocido en las perforaciones. La formación está constituida por una arenisca gris dura con textura media a gruesa que representa el principal reservorio por sus fracturas.

#### • Formación Santa Elena (Cretácico).

Esta formación consiste en depósitos turbidíticos finos de aguas profundas, deslizamientos y flujos de detritos, representados por niveles finamente estratificados de pelitas silíceas y radiolaritas con participación de tobáceas de colores blanquecinos. El conjunto se caracteriza por una intensa deformación de tipo dúctil con desarrollo de clivaje penetrativo que determina pliegues y fallamientos.

#### • Formación Cayo (Cretácico).

Está constituida por sedimentos marinos (lutitas bituminosas y turbiditas finas), volcánicos (lavas almohadilladas) y volcano clásticos (tobas).

Consiste de una espesa secuencia volcánica y volcano-sedimentaria cuya localidad tipo se encuentra en los alrededores de Guayaquil, con aproximadamente 3000m de espesor que no aflora en la Península.

#### • Formación Piñón (Jurásico- Cretácico Medio)..

Está constituida por basaltos afaníticos almohadillados, doleritas intrusivas y algunas intrusiones gabroides y ultramáficas. La edad ha sido determinada como Aptiano Superior-Albiano. "*Informe de geología y yacimientos de Ancón, pag 11*".

#### 1.3 Datos históricos.

Al pasar de los años, el campo ha experimentado declinaciones de producción debido a paradas de operaciones ya sea por daños en los equipos, fenómenos climáticos, falta de inversión u otras razones.

En el siguiente ítem se observa la variación de producción del campo anualmente.

#### 1.3.1 Historia del desarrollo del Campo.

En la fig. 4 se muestra la curva de declinación de la producción del campo a partir del año 1922. Desde el año 2002 hasta 2012 se observa la producción de la compañía actualmente operadora. También se ha hecho una proyección de la producción hasta 2022 bajo las condiciones actuales de inversión.

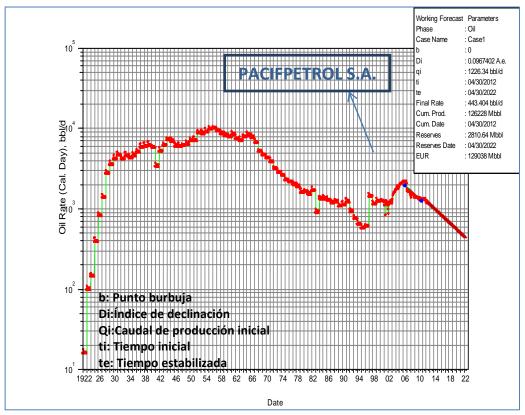



Fig. 4 Curva de índice de declinación del Campo Ancón.

Fuente: Pacifpetrol./Programa OFM.

En la gráfica anterior podemos observar un índice de declinación de 0.0967,con un caudal inicial de 12266.34 BPPD.

La producción acumulada es 126228 Mbl podemos observar en la Fig. 5 como ha sido el comportamiento durante la vida productiva del Campo Ancón.

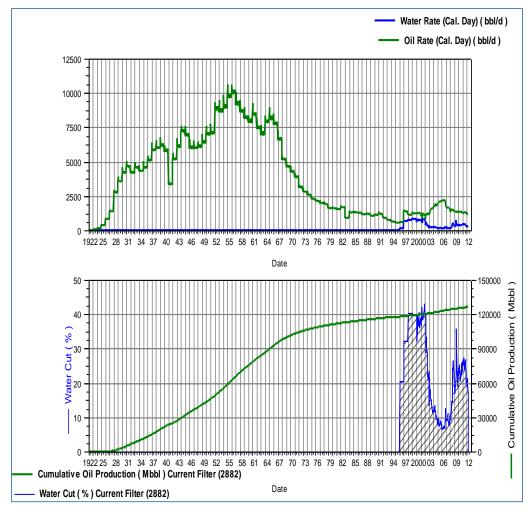



Fig. 5 Comportamiento histórico de producción del Campo Ancón. Fuente: Pacifpetrol./Programa OFM

## 1.4 Yacimiento.

Se entiende por yacimiento una unidad geológica de volumen limitado, poroso y permeable que contiene hidrocarburos en estado líquido y gaseoso. Un yacimiento de hidrocarburos debe tener una roca fuente, roca almacenadora/porosidad, Migración, Trampa, Permeabilidad.("Fundamentos de ingeniería de yacimiento Freddy H. Escobar, Ph.D. pag. 13").

El principal yacimiento del Campo Ancón produce reservorios de edad Terciaria, habiendo acumulado una producción total de 110 MMBLS (95% de la producción

acumulada total de la Península). El 5% restante (6 MM bls) proviene de un conjunto de pequeños yacimientos de edad Cretácica (Santa Paula, Petropolis, Carolina, y Cautivo) . *Informe de geología y yacimientos de Ancón, datos histórico del año 1999*.

#### 1.4.1 Propiedades de los fluidos.

Para la determinación de las propiedades de los fluidos de los yacimientos, es necesario tomar muestras de fluidos de fondo representativas a condiciones de confinamiento, de tal forma que los resultados sean valores confiables para posteriores estudios de los reservorios.

#### - Factor volumétrico, (βo)

El factor volumétrico del petróleo se define como la razón entre el volumen de petróleo más su gas en solución, a condiciones de yacimiento, respecto al volumen de un barril de petróleo producido medido a condiciones de superficie. El factor volumétrico del petróleo, (βo), de los yacimientos del Campo Ancón, se ilustra en el tabla N° 2.

$$\beta_0 = \frac{\text{Volumen de petróleo con su gas en solución}}{\text{unidad volumétrica de petroleó acond.normales}}, \left[\frac{BY}{BN}\right]$$

| Campo | Yacimiento °API  |      | Bo<br>By/Bn |
|-------|------------------|------|-------------|
|       | SOCORRO          | 36.8 | 1.200       |
|       | CLAY PEBBLE BEDS | 39   | 1.200       |
| ANCÓN | SANTO TOMAS      | 38.8 | 1.200       |
| ANCON | PASSAGE BEDS     | 39   | 1.200       |
|       | ATLANTA          | 40   | 1.200       |
|       | SANTA ELENA      | 33.6 | 1.200       |

Tabla N° 2 Factor volumétrico del Campo Ancón.

Fuente: RED. (Ralph E. Davis) Associates. Inc. Estudio realizado en

diciembre del 2009

#### Densidad.

La densidad,  $(\rho)$ , denota la relación correspondiente de peso específico y de fluidez de los crudos con respecto al agua.

#### Densisdad °API

La gravedad API, de sus siglas en inglés American Petroleum Institute, es una medida de densidad que describe que tan pesado o liviano es el petróleo comparándolo con el agua. Si los grados API son mayores a 10, es más liviano que el agua, y por lo tanto flotaría en esta. La gravedad API es también usada para comparar densidades de fracciones extraídas del petróleo.

La fórmula usada para obtener la gravedad API es la siguiente:

$$API = (141,5/GE) - 131,5$$

#### 1.4.2 Propiedades de la Roca.

Las rocas almacenadoras de fluidos tienen varias características petrofísicas, como, porosidad, permeabilidad, saturación de fluidos, presión capilar, mojabilidad.

#### Porosidad.

Es la capacidad de las rocas para contener fluidos y es el resultado de la relación entre el volumen de espacios vacíos sobre el volumen total de la roca.

$$\emptyset = \frac{\text{Volumen Vacío}}{\text{Volumen Total}}$$
, es expresada en términos porcentuales.

 Permeabilidad. Se define como la habilidad de un yacimiento para permitir el flujo de un fluido a través de los espacios vacíos interconectados. La permeabilidad depende fundamentalmente de: tamaño y abertura de los poros, grado de conectividad y tipo de cemento entre los granos. La permeabilidad se mide en darcys.

 Saturación de fluidos de una roca. Es la relación del volumen del fluido dentro del volumen total poroso. Está expresada como un porcentaje del volumen poroso.

En la Tabla N° 3 se presentan los valores de cada una de las propiedades de la roca de los yacimientos productores del Campo Ancón.

| Campo | Yacimiento  | Ø<br>(Frac) | k<br>(md) | Sw<br>Frac | °API | Vol. Roca<br>Acre/pie |
|-------|-------------|-------------|-----------|------------|------|-----------------------|
| ANCÓN | Socorro     | 0.250       | 82        | 0.45       | 36.8 | 267.808               |
|       | СРВ         | 0.100       | 55        | 0.50       | 39   | 72.808                |
|       | Santo Tomas | 0.110       | 6         | 0.64       | 38.8 | 521.001               |
|       | РВ          | 0.075       | 5         | 0.64       | 39   | 480.034               |
|       | Atlanta     | 0.100       | 3         | 0.64       | 40   | 3.963.844             |
|       | Santa Elena | 0.110       | 7.7       | 0.60       | 33.6 | 220.360               |

Tabla N° 3 Propiedades de la roca del Campo Ancón.

Fuente: RED. (Ralph E. Davis) Associates. Inc. Estudio realizado en diciembre del 2009

#### 1.4.3 Reservas.

Son aquellos volúmenes estimados de hidrocarburos líquidos y gaseosos (petróleo crudo, condensado, gas natural y líquidos provenientes del gas natural), que se pueden recuperar comercialmente de acumulaciones conocidas. Las reservas se clasifican en: COMPROBADAS Y NO COMPROBADAS.

#### Reservas comprobadas o probadas.

Las Reservas Probadas son los volúmenes de hidrocarburos estimados con razonable certeza y recuperables de yacimientos conocidos, de acuerdo con la información geológica y de ingeniería disponible y bajo condiciones operacionales.

El término "razonable certeza" indica un alto grado de confianza de las cantidades estimadas que serán recuperadas.

#### Reservas no comprobadas.

Estas reservas tienen menor certeza en la recuperación que las reservas comprobadas y pueden además clasificarse en reservas probables y reservas posibles, denotando progresivamente incrementos en el grado de incertidumbre en la recuperación de las mismas.

#### Reservas probables.

Son aquellas reservas que se encuentran hacia el límite del reservorio, son los volúmenes estimados de hidrocarburos asociados a acumulaciones conocidas, en los cuales la información geológica, de ingeniería, contractual y económica, bajo las condiciones operacionales prevalecientes, indican (con un grado menor de certeza al de las reservas probadas) que se podrán recuperar.

#### Reservas posibles.

Las Reservas Posibles son los volúmenes de hidrocarburos, asociados a acumulaciones conocidas, en los cuales la información geológica y de ingeniería indica (con un grado menor de certeza al de las reservas probables) que podrían ser recuperados bajo condiciones operacionales y contractuales prevalecientes. Son aquellas reservas que se pueden calcular con datos geofísicos y geológicos, sin perforar un pozo.

A continuación se muestra en la Tabla  $N^\circ$  4 los valores estimados de reservas del Campo Ancón al año 2009 .

| Reservas del Campo "Ing. Gustavo Galindo Velasco." |            |               |           |                                |                                |                            |                           |
|----------------------------------------------------|------------|---------------|-----------|--------------------------------|--------------------------------|----------------------------|---------------------------|
| Campo                                              | Yacimiento | POES<br>MMBIs | FR<br>(%) | RESERVAS<br>TOTALES<br>(MMBLS) | R. PROBADAS<br>TOTALES (MMBIs) | R.<br>PROBABLES<br>(MMBIs) | R.<br>Posibles<br>(MMBls) |
| ANCÓN                                              | Socorro    | 238.1         | 13%       | 31.47                          | 0.21                           | 0.01                       | 0.01                      |
|                                                    | СРВ        | 23.3          | 10%       | 2.33                           | 0.50                           | 0.02                       | 0.01                      |
|                                                    | Santo T.   | 133.4         | 9%        | 12.17                          | 0.47                           | 0.01                       | 0.01                      |
|                                                    | РВ         | 83.8          | 3%        | 2.42                           | 1.10                           | 0.03                       | 0.01                      |
|                                                    | Atlanta    | 922.5         | 8%        | 73.53                          | 0.10                           | 0.67                       |                           |
|                                                    | Santa E.   | 62.7          | 10%       | 6.43                           | 0.32                           |                            |                           |
| TOTAL                                              |            | 1463.7        |           | 128.35                         | 2.71                           | 0.74                       |                           |

Tabla N°4 Reservas del Campo Ancón. Fuente: RED. (Ralph E. Davis) Associates. Inc. Estudio realizado en diciembre del 2009.

# CAPÍTULO II DESCRIPCIÓN DE LOS SISTEMAS DE LEVANTAMIENTO ARTIFICIAL EMPLEADOS EN EL CAMPO ANCÓN.

#### 2.1 Descripción.

La producción de fluidos genera disminución de presión del reservorio, incremento de producción de agua y decremento de la fracción de gas. Todos estos factores reducen o anulan la producción de fluidos de un pozo hasta la superficie. Por esta razón es que surgen los métodos artificiales de extracción, que añanden energía al fluido acumulado en el fondo del pozo para que llegue hasta superficie a tasas económicamente rentables. A continuación se detalla los métodos de Sistemas de Levantamiento Artificial, (SLA), empleados en el Campo Ancón operado por la compañía PACIFPETROL S.A.

#### 2.2 Método de extracción por Herramienta Local.



Fig. 6 Sistema de levantamiento artificial por Herramienta Local. Fuente: Pacifpetrol.

El método más sencillo en el proceso de extracción de crudo en el Campo Ancón es el sistema de Herramienta Local (Ver Fig. 6).

Para este sistema se utiliza una unidad móvil cuyos componentes principales son: pluma, cable, motor principal (camión), motor auxiliar, polea, y, sistema hidráulico de estabilización.

La herramienta principal de extracción de crudo es una botella también conocida como cuchara; se trata de un cilindro de material acerado o fibra de vidrio, cuyas dimensiones son: 3, 4 o 6 pulgadas de diámetro dependiendo del diámetro del

casing de los diferentes pozos y de 6 a 10 m de longitud, con una válvula de retención en su parte inferior.

#### 2.2.1 Procedimiento operativo.

El camión o unidad móvil se ubica en una posición adecuada para tener una buena operación, y se estabiliza mediante dos gatos de accionamiento hidraúlico. La botella se sumerge en el casing por gravedad (observar diagrama de completación en el ANEXO 1.1), hasta alcanzar el nivel de fluido en el fondo; la válvula inferior se abre e ingresa el petróleo hasta que la botella se llene. Luego, la botella es levantada mediante la tracción generada por el motor auxiliar y la válvula se cierra por el peso del fluido, llega a la superficie y se descarga el crudo en un embudo que lo canaliza a un tanque de almacenamiento adaptado a la unidad. Este proceso se repite varias veces hasta lograr recuperar la producción acumulada en el fondo del pozo.

## 2.2.2 Problemas operacionales.

Los problemas operativos del sistema de levantamiento artificial por Herramienta Local son:

- ✓ La botella puede quedar presa en el pozo por rotura de cable desgastado.
- ✓ La botella puede quedar presa por sumergirse en residuos o lodo en el fondo del pozo.
- ✓ Botellas atascadas por casing colapsado.
- ✓ Botellas atascadas por mal manejo de los operadores en la unidad.

Estos problemas generan un alto costo de operación por intervención al pozo por servicio de pulling; este SLA es costoso en el Campo Ancón por consumo de combustibles.

## 2.3 Método de extracción por Pistoneo o Swab.

Esta operación consiste en succionar la columna de fluido petróleo o petróleoagua que se encuentra en la tubería de producción, desde una profundidad
determinada hasta la superficie utilizando un cable de acero enrollado o winche.
Una desventaja que presenta este método de levantamiento artificial a la empresa
PACIFPETROL es el alto costo de operación por barril producido. (Ver Fig. 7).



Fig.7 Sistema de levantamiento artificial por Pistoneo o Swab. Fuente: Pacifpetrol.

#### 2.3.1 Equipo de superficie.

Los componentes principales de la unidad son: El motor a diesel, un malacate, una pluma, sistema hidráulico de estabilización, cable 9/16", lubricador, manguera de producción y tanque de almacenamiento.

#### 2.3.2 Equipo de subsuelo.

Los principales componentes del equipo de subsuelo son los siguientes:

#### Copas de Swab.

Las copas de Swab, generalmente de caucho y algunas combinadas con metal, son utilizadas con el propósito de extraer o succionar el fluido de la tubería de producción y ejercer un sello con las paredes del tubing.

## Portacopas.

Son acoples donde se ubican las copas, van colocados en el extremo inferior del varillón y están disponibles al diámetro de la tubería de producción.

## Standing valve.

Es una válvula de control de flujo asentada en una cruceta o asiento de bomba, no permite que el fluido retorne hacia el pozo. El standing puede ser asentado por medio de un cable de acero, o soltándolo de la superficie para que baje libremente hasta la profundidad de la cruceta.(*Reacondicionamiento de pozos –Kleber Kiroga pag. 109*).

#### 2.3.3 Procedimiento operativo.

La unidad de extracción por pistoneo se ubica en la locación, es estabilizada por unos mandos hidráulicos, una vez cuadrada se levanta la pluma para iniciar la operación de extracción. Luego se coloca una reducción para que el fluido que se recuperará del pozo se dirija al tanque de almacenamiento de la unidad.

El siguiente paso es soltar el standing valve por caída libre hasta la cruceta, si el pozo no tuviera standing fijo, esto ahorra significativamente tiempo en las labores de producción. (Ver diagrama de completación ANEXO 1.2). Luego se baja el cable, que incluye el varillón copas y portacopas.

Una vez alcanzado el nivel de fluido, se efectúan carreras ascendentes y descendentes que generan succión permitiendo al fluido que entre por la válvula de retención (standing) y luego sobre las copas. El peso del fluido hace que las copas se hinchen y produzcan un sello para que el petróleo no retorne al fondo. Cuando el operador considere oportuno, levantará el conjunto de Swab hasta la superficie y la producción se canaliza por la manguera de producción hasta el tanque de almacenamiento.

## 2.3.4 Problemas operacionales de Swab.

Cuando se interviene un pozo podemos encontrarnos con cualquier tipo de problema que dificulta la intervención. A continuación se menciona algunos problemas operacionales:

- ✓ Tubos 2 3/8" colapsados (no se calibró o se colapsó por excesivo torque aplicado por la tenaza o llave hidráulica) que pueden aprisionar el conjunto de Swab o no permitir que baje hasta el nivel de fluido.
- ✓ Presencia de parafina suave o dura.
- ✓ Rotura del tubo (por el rozamiento de la bajada del conjunto de swab, o deteriorado por la presencia de carbonato).
- ✓ Presencia de lodo de perforación.
- ✓ Herramientas presas.
- ✓ Daños en el lubricador hidráulico (pérdida de tiempo).
- ✓ Desgaste y rotura de cable.

Este sistemas es el más costoso en el campo por excesivos usos de repuestos, combustible y operadores y, por servicio de pulling al pozo.

## 2.4 Método de extracción por Bombeo Mecánico.



Fig. 8 Sistema de levantamiento artificial por Bombeo Mecánico.

Fuente: Pacifpetrol.

Es el método de extracción más utilizado por su bajo costo operativo, facilidad de operación y bajos riesgos de derrame por ser una operación a baja presión. Sin embargo, existen límites físicos para la aplicación en cuanto a la profundidad y caudales a levantar. Debido a su simplicidad, es factible utilizarlo en casi todos los pozos que requieren de levantamiento artificial. (Ver Fig. 8).

## 2.4.1 Equipo de superficie.

Los componentes de superficie del Bombeo Mecánico son:

- Unidad de bombeo. Es la máquina que ejerce el movimiento reciprocante para levantar y bajar la sarta de varillas que están conectadas con la bomba de subsuelo.
- **Motor**. Suministra la fuerza requerida para la operación de la unidad.
- Reductor de engranaje. La función de la caja de engranaje es convertir el torque bajo y alta velocidad proveídos por el motor en torque alto y baja velocidad necesarios para operar la unidad de bombeo.
- Cabezal y conexiones superficiales. Está constituido por una serie de válvulas que permiten el paso del fluido del pozo a la línea de producción.
- **2.4.2 Equipo de subsuelo.** Es el que constituye la parte fundamental de todo el sistema de bombeo. Los componentes principales son:
  - Bomba de subsuelo. Es una bomba de pistón de desplazamiento positivo funciona por diferencial de presión mediante bolas y asientos para permitir la entrada y sellar la salida de los fluidos durante la operación.

#### Componentes de la bomba:

 Barril.- También conocido como camisa, es un cilindro de superficie completamente lisa o pulida; dentro de él, se mueve el pistón; la longitud del barril o cámara es de 6, 8, 12, 16 pies.

- Pistón o émbolo.- Es el émbolo de la bomba y su diámetro determina la capacidad de desplazamiento.
- Mandril.- El cuerpo del mandril hace sello y anclaje a la bomba; el sello no permite que el fluido regrese al yacimiento; y, el anclaje es para que la bomba quede justamente fija dentro de la tubería.
- Válvula fija.- Está formada por un sistema de bola y asiento ubicadas al extremo inferior del barril de la bomba. Permite la entrada del fluido del pozo al interior de la bomba.
- Válvula móvil o viajera.- Es también un sistema de bola y asiento ubicados en el extremo inferior del pistón que permite la descarga de fluido desde la bomba hacia la tubería de producción. Por estar acoplada al pistón, viaja durante el ciclo del bombeo.

#### 2.4.3 Equipo de transmisión de movimiento.

- Varillón pulido. Es el que soporta el peso de las varillas, la bomba y el peso del fluido en la carrera ascendente del balancín. En la parte superior va sujeta por medio de una grampa que descansa sobre el elevador del balancín.
- Sarta de varillas. Es el enlace que proporciona la conexión entre la unidad de bombeo que se encuentra instalada en la superficie y la bomba en la profundidad de la arena productora en el pozo. Mediante ésta se transmite movimiento ascendente y descendente a la bomba para el desplazamiento de fluido.

#### 2.4.4 Procedimiento operativo.

Este método de extracción levanta el fluido desde el fondo del pozo hasta superficie y luego lo impulsa hacia el tanque de recolección. La bomba de

subsuelo es accionada por el movimiento reciprocante de la Unidad de Bombeo transmitido por una sarta de varillas.

La Unidad de Bombeo en su movimiento tiene dos puntos muy bien definidos, muerto superior y muerto inferior. Cuando el balancín está en el punto muerto inferior, las válvulas fijas y viajeras están cerradas. Al comenzar la carrera ascendente, la presión de fondo y el efecto de succión del pistón permiten la apertura de la válvula fija; por tal motivo, el fluido pasa del pozo hacia el interior de la bomba. Al mismo tiempo la columna de fluido ejerce una presión sobre la válvula viajera y permanecerá cerrada durante la carrera ascendente. El fluido continúa llenando la bomba hasta llegar a punto muerto superior; la válvula fija se cierra y comienza la carrera descendente; el pistón se mueve hacia abajo y produce el efecto de compresión, al chocar con el fluido, la presión interna abre la válvula viajera; el pistón continua su carrera descendente, mientras el fluido es transferido a la tubería de producción hasta llegar al punto muerto inferior; y, se repite el ciclo.

## 2.4.5 Problemas operacionales.

La toma de cartas dinamométricas es útil para detectar los problemas que existen en el Campo cuando el sistema de Bombeo Mecánico no trabaja adecuadamente y el pozo no produce; y también, para encontrar las posibles soluciones.

La interpretación consiste en un análisis cualitativo de la carta; antes de mencionar los modelos de problemas operacionales se muestra (Fig. 9) una interpretación de la carta llena (sin problema) del pozo.

#### Interpretación de carta llena.

Descripción del punto A.- posición del punto muerto inferior, ambas válvulas están cerradas.

Punto B.- Al iniciarse la carrera ascendente, la válvula viajera permanece cerrada, porque la carga de la columna de fluido es transferida de la tubería de producción a la sarta de varillas. La válvula fija abre tan pronto como la presión fluyente del

pozo exceda al interior de la bomba; las varillas sufren un estiramiento y el pistón no se mueve hasta llegar al punto B.

Punto C.- El pistón se mueve de B a C (final de la carrera ascendente), provocando una succión debajo de él, y permite la entrada de fluido de la formación hacia la bomba. La válvula viajera continúa cerrada.

Punto D.- Al llegar al punto muerto superior C, inmediatamente comienza la carrera descendente, la válvula fija cierra debido al incremento de presión que resulta por la compresión de los fluidos entre las válvulas. La válvula viajera abrirá dependiendo del porcentaje de gas libre existente o llenado de la bomba; es decir, cuando la presión interna sea mayor a la ejercida por la columna de fluido sobre el pistón punto D.

El fluido pasa a través de la válvula viajera (segmentos D-A), mientras el peso de la columna es ahora soportado por la tubería de producción y la válvula fija, la cual permanece cerrada. Luego se llega nuevamente al punto inicial (A), lo cual, completa el ciclo de bombeo registrado en una carta dinagráfica mostrada a continuación.(Fig. 9)

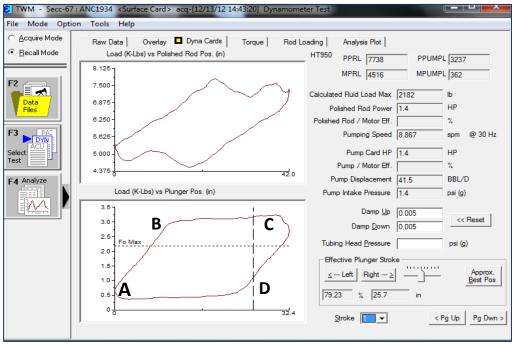



Fig. 9 Carta llena Fuente: Pacifpetrol.

## • Golpe de fluido (Fluid Pound).

Cuando en la carrera ascendente la cámara inferior de la bomba no se llena completamente con líquido, queda en la parte superior de la misma una zona de gas de baja presión entre el nivel de fluido y la válvula móvil.

En la correspondiente carrera descendente, la válvula móvil permanece cerrada por efecto del peso de la columna de petróleo, hasta que el pistón hace impacto en la superficie del fluido. A esta condición se le llama Golpe de fluido, el mismo que, produce efectos negativos en todo el sistema de bombeo.

Hay condiciones que pueden producir el golpe de fluido:

- Restricción a la entrada de la bomba: se produce cuando alguna causa impide o dificulta la entrada de fluido, independientemente del nivel de fluido en el pozo. En este caso, aunque detengamos el bombeo unos minutos, al iniciar la operación, inmediatamente se produce el golpe de fluido.
- Nivel agotado (pump off): ocurre cuando el nivel de fluido no es suficiente para llenar la bomba. Se puede reconocer este estado deteniendo el bombeo unos minutos, y luego comenzando a bombear nuevamente.
   Si el llenado de la bomba es satisfactorio durante un lapso de tiempo y luego se vuelve a producir el golpe de fluido, esto confirma que se trata de un caso de nivel agotado.
- Viscosidad y elevados golpes por minuto: El llenado incompleto de la cámara de la bomba se produce debido a la resistencia al pasaje de fluido por la válvula y el caudal exigido por el ritmo de bombeo.

La presencia de golpe de fluido durante la operación de bombeo es indeseable. Algunas veces se manifiesta con vibraciones y golpes detectables en superficie; en otros casos, sobre todo, en pozos profundos, se visualiza sólo en las cartas dinamométricas (depende de la intensidad).

El golpe de fluido puede producir los siguientes problemas al sistema de Bombeo Mecánico:

- Falla por fatiga en la estructura de la unidad de bombeo.
- Falla por fatiga en dientes de la caja de cojinetes.
- Falla por fatiga en la estructura de la unidad.
- Falla por fatiga en las varillas, especialmente en la zona inferior de la sarta, por efecto de los esfuerzos alternativos de compresión y tracción.
- Acelerado deterioro de la válvula móvil, rotura de vástago y barril, y fallas en el funcionamiento de la válvula de pie.
- Acelerado desgate de las roscas del tubing produciendo filtraciones y hasta la rotura del tubing.

Para lograr la disminución de los efectos del golpe de fluido, o la eliminación del mismo, se puede adoptar algunas o todas las acciones que se indican a continuación:

- Dimensionar la instalación de manera tal que con un rendimiento del 80% extraiga del pozo la cantidad de producción.
- En el caso que el equipo esté trabajando con un rendimiento mayor, lo cual es poco probable, el golpe de fluido que ocurre en el primer 20% de la carrera descendente no tiene por lo general grandes consecuencias debido a la magnitud del mismo, excepto que esté combinando con una profundidad crítica de instalación.

#### Interferencia por gas.

Cuando la presión de fondo de pozo disminuye a valores suficientemente bajos, en la mayoría de los casos se liberan burbujas de gas presentándose así una fase gaseosa a la entrada de la bomba.

La consecuencia inmediata de este fenómeno es la pérdida de eficiencia de la bomba debido a que parte de su cámara se ocupa con gas en cada embolada.

## Golpe de gas (Gas Pound).

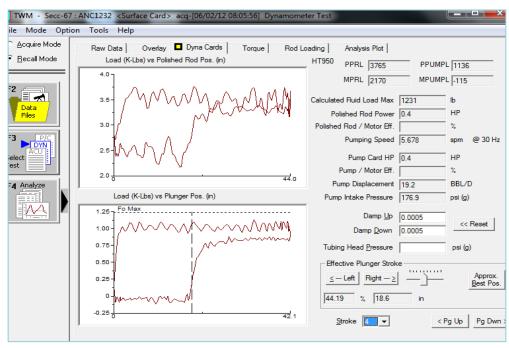



Fig. 10 Golpe de gas. Fuente: Pacifpetrol.

Si se incrementa el ingreso de gas libre a la bomba en cantidades suficientes, se pueden producir situaciones indeseables como la de Golpe de gas (observar Fig. 10), que puede dañar partes de la bomba.

En situaciones como estas, la utilización de controladores de pozo optimizará la producción y evitará el daño de las partes de la bomba. También se recomienda la utilización de piezas especiales para el bombeo de gas, tales como válvulas antibloqueo de gas.

## Bloqueo por gas. (Gas Lock).

Si se continúa incrementando el ingreso de gas libre a la bomba, puede darse la situación que se interrumpa la producción. Esto se debe a que la presión máxima del gas alcanzada durante la carrera descendente no es suficiente como para abrir la válvula viajera. A su vez, durante la carrera ascendente, la presión dentro de la bomba no reduce lo suficiente como para que abra la válvula estacionaria. Por ende, dentro de la bomba sólo se comprime y descomprime gas en cada embolada, habiéndose suspendido la producción.

Dispositivos especiales utilizados en la bomba pueden evitar este fenómeno.

La utilización de controladores, a su vez, permiten detener el bombeo hasta que la presión en el anular logre abrir la válvula estacionaria y así reiniciar el bombeo. De no recuperarse las condiciones para reiniciar y mantener la producción, el controlador detendrá el bombeo para evitar el daño de la bomba.

#### Arena e incrustaciones

Cuando junto al fluido producido entra arena al pozo, se pueden presentar numerosos problemas en los equipos de producción. Para evitar estos inconvenientes es necesario tener en consideración no sólo materiales y diseños especiales para las bombas, sino también experiencia y conocimiento de la zona donde se encuentran los pozos:

Para analizar las posibles soluciones, es necesario conocer la viscosidad del petróleo, granulometría y cantidad de arena por unidad de volumen.

Es conveniente, en estos casos, trabajar por encima de los punzados para permitir que se decante la arena en el fluido ascendente a través del tubing y, antes de la entrada a la bomba.

Las luces de los pistones dependerán del tamaño de grano de la arena y de la viscosidad del fluido.

En las bombas de barril estacionario es recomendable reemplazar la guía del vástago por alguna válvula del tipo antibloqueo de gas; lo cual, evita que durante la carrera descendente, ante cualquier parada del sistema de bombeo, reingrese la arena al interior del barril.

También, se suelen usar en las bombas, extensiones cuyos diámetros son un tanto mayores que el del barril. La longitud de las extensiones, barril y pistón, están calculadas para que en cada carrera el pistón se desplace un trecho fuera del barril produciendo un lavado y evitando que se aprisione por problemas de arena e incrustaciones.

En ciertos lugares, donde se producen agitaciones del fluido o caídas de presión, se pueden formar depósitos e incrustaciones que tapan tanto la entrada como las diferentes partes de la bomba.

Usualmente, este inconveniente se resuelve con tratamientos químicos que previenen o disuelven la formación de estos depósitos.

#### Corrosión.

La corrosión es un serio problema cuando se trata de producir petróleo, en especial, si es necesario utilizar métodos artificiales de extracción.

Con el paso de los años, los pozos en producción comienzan a aumentar su contenido de agua, ya sea por causas naturales o por inyección para recuperación secundaria, y asociada con esta se presentan los primeros signos de corrosión.

Actualmente, se han desarrollado nuevas tecnologías que permiten aumentar la profundidad de los pozos; esto ocasiona que, cada vez sea más dificil controlar la corrosión por métodos químicos o, mediante la utilización de materiales resistentes a la corrosión y capaces de admitir las tensiones impuestas a las bombas por las nuevas profundidades.

Cuando hay corrosión, no es posible eliminarla totalmente; en todo caso, se trata de reducir el daño a valores aceptables en términos técnico-económicos. En general, la corrosión dependerá del PH y del porcentaje de contenido de agua. También, intervienen factores como: la temperatura de fondo de pozo y la posibilidad de contaminación con gases ácidos tales como CO<sub>2</sub> / H<sub>2</sub>S.

Cuando se está en presencia de un pozo corrosivo, lo primero a tener en cuenta es el desarrollo de un programa de aplicación de inhibidores.

En el sistema de extracción por Bombeo Mecánico, la bomba de profundidad es una de las partes más difíciles de proteger mediante el uso de inhibidores porque: en el exterior existen problemas asociados a la velocidad de circulación del fluido, a la erosión y a la cavitación que afectan, negativamente, la performance del producto químico.

#### Varilla rota.

Este problema se produce principalmente en casos de mala operación. Es común que los balancines se hagan trabajar con golpe de fluido (para maximizar la extracción) o con golpe de bomba (para evitar bloqueos de gas). Los golpes de

fluidos o de bomba generan esfuerzos anormales en la sarta de varillas que merman su resistencia y terminan rompiéndolas con el tiempo.

En la Fig. 11 se muestra una carta dinamométrica tomada en un balancín trabajando con varilla rota. Nótese la tendencia horizontal de la gráfica, debido a que no hay diferencia de carga durante todo el ciclo de bombeo, porque el balancín solo soporta la porción de varillas en la parte superior de la rotura.

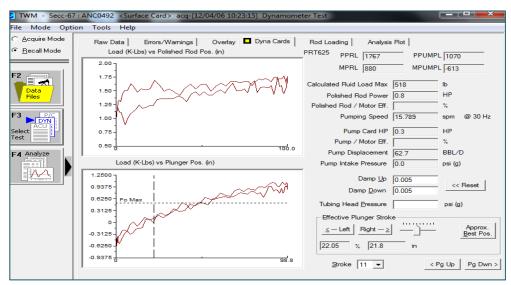



Fig.11 Carta - Varilla rota

Fuente: Pacifpetrol.

Todos estos problemas causan pérdida de horas para la producción de petróleo; pero, el campo cuenta con la disponibilidad del equipo de mediciones físicas y la experiencia de personal.

## 2.5 Método de extracción por Gas Lift.

El levantamiento a gas es apropiado para casi cualquier tipo de yacimiento petrolífero, aunque, es de mayor ventaja en pozos con alta producción o con altos valores de gas en solución. Se define como un proceso de levantamiento de fluidos desde las perforaciones del pozo, mediante la adición de gas relativamente a alta presión hacia la columna de fluido.

Para la aplicación del levantamiento artificial por gas es muy importante tomar en cuenta la profundidad del pozo y las características del crudo, puesto que, estos parámetros afectarán, directamente, el cálculo de la presión de inyección.

En la siguiente Fig. 12 se muestra un diseño típico de las instalaciones de superficie de un pozo en producción por Gas Lift intermitente en el Campo Ancón.



Fig. 12 Sistema de levantamiento artificial por Gas Lift.

Fuente: Pacifpetrol.

### 2.5.1 Equipo de superficie.

Los componentes principales del equipo de superficie del sistema por Gas Lift son:

Controlador de inyección: Se encarga de controlar por tiempo la apertura y cierre de la válvula motora.

**Válvula motora:** Permite el ingreso del gas inyectado hacia el fondo del pozo ya sea a través de la tubería o casing.

Estrangulador de flujo: Regula el pase de gas a través del macarroni o casing en el anular.

Válvula maestra: Nos permite el control del pozo.

## 2.5.2 Equipo de subsuelo.

El equipo de subsuelo del método por Gas Lift es el siguiente:

- El mandril de Gas Lift.
- Niple de asiento.
- Standing valve.
- Tubo perforado + tapón.

#### 2.5.3 Procedimiento operativo.

El sistema de Gas Lift es un método que consiste en inyectar gas desde un compresor a una presión determinada; encausarlo hacia la parte inferior de la columna de fluido en la tubería del pozo, con el fin de disminuir el peso de la misma, para que el fluido llegue a superficie.

En el Campo Ancón, se aplica la inyección de gas por períodos de tiempo; es decir, Gas Lift Intermitente. Después de la inyección de gas, el fluido del yacimiento alcanza la superficie; se debe contar con suficiente presión en el cabezal del pozo para mover los fluidos hasta el separador. Una cantidad de gas adicional podría causar un incremento en la presión y reducir la producción del fluido del yacimiento. Ver diagrama de completación (ANEXO 1.4).

Este ciclo se repite cuantas veces sea necesario para optimizar la producción de petróleo.

#### 2.5.4 Problemas operacionales.

Entre los problemas operativos, se registran:

- Bloqueo de líneas de inyección de gas por formación de hidratos sólidos y condensación de agua.
- Pérdida de integridad del casing debido a uso de gases corrosivos para levantamiento.
- Taponamiento de tubería por acumulación de sólidos (arena), parafina.
- Daños en compresores.

El personal operativo del Campo Ancón tiene experiencia en la operación de este sistema; sin embargo no es la selección adecuada para la implementación del proyecto en el área debido al alto costo de compresores que requiere esta unidad.

# 2.5.5 Pozos actualmente intervenidos en el Campo Ancón por el método de Gas Lift.

En la Tabla N°5 se muestran los pozos operativos en el Campo Ancón por el Sistema de Levantamiento Artificial por Gas Lift.

| POZOS   | OPERATIVO | OS POR EL N | MÉTODO DE GA | AS LIFT |
|---------|-----------|-------------|--------------|---------|
| POZO    | ZONA      | SECCIÓN     | POTENCIAL    | CICLO   |
| ANC0130 | NORTE     | 73          | 7            | 3       |
| ANC0132 | NORTE     | 73          | 4            | 3       |
| ANC0020 | NORTE     | 73          | 12           | 6       |

Tabla N° 5 . Pozos operativos de Gas Lift en el Campo Ancón.

Fuente: Pacifpetrol.

## 2.6 Método de extracción por Plunger Lift

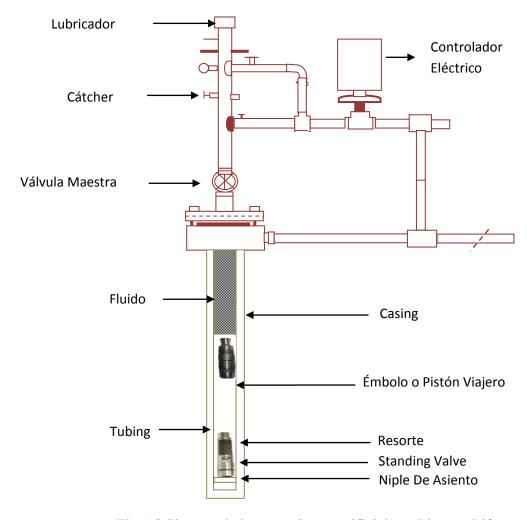



Fig. 13 Sistema de levantamiento artificial por Plunger Lift. Elaborado por: Jenny Guale.

Este sistema consiste en un émbolo que viaja a través de la tubería de producción de manera cíclica, arrastrando el fluido hasta la superficie, impulsado por la presión de gas del pozo o de una fuente externa. (Ver Fig. 13).

#### 2.6.1 Procedimiento de operación.

En funcionamiento de operación del sistema Plunger Lift en el Campo Ancón se realiza mediante dos mecanismos que son: Plunger Lift Autonómo y Asistido

#### Plunger Lift Autónomo.

En el campo Ancón el sistema de levantamiento artificial Plunger Lift Autónomo, utiliza la energía del yacimiento para la producción de los fluidos del pozo; el método se basa en una secuencia de aperturas y cierres controlados en la superficie para que la acumulación de gas proporcione la energía suficiente para hacer viajar un pistón en la tubería de producción que lleva los fluidos a la superficie. (Observar diagrama de completación, ANEXO 1.5.3).

El ciclo comienza con un periodo de cierre con el fin de permitir que el pozo acumule suficiente presión en el espacio anular; la válvula de producción se cierra automáticamente para detener el flujo a través de la tubería de producción; en ese momento, el pistón cae desde el lubricador en superficie hasta el Bumper Spring en el fondo de la sarta de tubería.

Una válvula abierta en el pistón permite el paso de fluido a través de él, mientras cae hasta llegar al fondo del pozo. Cómo la válvula de producción está cerrada, la presión en el interior del pozo aumenta, progresivamente, por la acumulación de petróleo, agua y especialmente gas.

Después que la presión en el anular ha alcanzado un valor determinado, la válvula de producción en superficie se abre, el gas del anular sale por el tubing hacia la línea de producción e impulsa en su salida al pistón que, a su vez, arrastra todo el líquido que se ha depositado sobre él.

## - Plunger Lift Asistido.

En cambio en este sistema la producción de petróleo llega a la superficie mediante la inyección de gas generada por un compresor. Esta ingresa por una tubería de inyección colocada a lado del tubing. El funcionamiento consiste en la apertura de la válvula automática proporcionado por un rango de tiempo; es decir, la válvula se abre en el tiempo determinado, en 1 minuto descansa y a los 5 minutos la válvula se abre e inyecta gas; esto, ocasiona una despresurización en el pozo, el pistón sube por el tubing ocasionando que el fluido llegue a la superficie y sea almacenado en el tanque de recolección. (ANEXO 1.5.1)

## 2.6.2 Componentes del Plunger Lift.

- **1. Controlador:** Abre y cierra de manera controlada las válvulas neumáticas, basándose en parámetros de tiempo y presión.
- **2. Bumper Spring o resorte**: Es un resorte que se fija en el fondo del tubing en el niple de asiento, tiene la finalidad de amortiguar el golpe en el descenso del pistón, en su parte inferior tiene un Standing Valve que impide el paso de fluido del tubing hacia el pozo durante los periodos de cierre.
- **3. Plunger o Pistón:** Es la interfase sólida entre el gas de levantamiento y nivel de fluido acumulado durante el periodo de flujo; éste viaja libremente dentro del tubing produciendo de manera intermitente.
- **4. Cátcher**: Este dispositivo sirve para retener el pistón cuando llega a superficie.
- **5. Lubricador:** Dispositivo instalado en la boca de pozo, encima de la válvula maestra; tiene por objetivo alojar al pistón cuando este se encuentre en superficie; internamente, tiene un pequeño resorte que amortigua la llegada del pistón.

**6. Sensor de arribo**: Este dispositivo va colocado en el lubricador y tiene la finalidad de detectar la llegada del pistón; cuando lo hace, le envía una señal al controlador para que comience el período.

**7 Válvula Neumática:** Esta válvula se conecta en la salida de la producción y es el dispositivo que realiza el cierre y la apertura del pozo, gobernada por el controlador electrónico

## 2.6.3 Problemas operacionales

En el sistema también se presentan problemas como:

- ✓ Roturas en el tubing (igualdad entre la presión de tubing y casing)
- ✓ Pérdidas en válvula neumática originadas por erosión del asiento.
- ✓ No apertura de la válvula neumática por baja presión en el gas de instrumento a causa de la formación de hidratos o presencia de líquido.
- ✓ Mal funcionamiento en los sensores de presión.
- ✓ Problemas en el sensor de arribo, imposibilitando el comienzo del periodo debido a una no detección del pistón.
- ✓ No arribo del pistón por excesivo desgaste del mismo.
- ✓ Configuración incorrecta de las variables de operación.

## 2.6.4 Pozos actualmente intervenidos por el método de Plunger Lift.

En la tabla  $N^\circ$  6 se muestran los pozos operativos en el Campo Ancón por el sistema de levantamiento artificial por Plunger Lift.

| POZOS OPE   | RATIVOS I | POR EL MÉTODO | DE PLUNGERT | LIFT  |
|-------------|-----------|---------------|-------------|-------|
| POZO        | ZONA      | SECCIÓN       | POTENCIAL   | CICLO |
| ANC0070     | NORTE     | 73            | 3           | 6     |
| ANC0099     | NORTE     | 73            | 1/2         | 1     |
| SANTA P0233 | NORTE     | SANTA PAULA   | 5           | 1     |
| SANTA P0228 | NORTE     | SANTA PAULA   | 3           | 1     |

Tabla N° 6 Pozos operativos por el Método Plunger Lift- Diciembre 2012.

Fuente: Pacifpetrol

## 2.7 Producción por método de Levantamiento Artificial en el Campo.

En la tabla N° 7 se muestra la producción promedio al año 2012 de todos los sistemas de extracción empleados en el Campo Ancón. Para una mejor administración el Campo se divide en tres zonas y estas son: Zona Norte, Zona Sur , Zona Central.

|                      |                     |         | ANCÓN   |                    |                                |                |
|----------------------|---------------------|---------|---------|--------------------|--------------------------------|----------------|
| SISTEMA              | NORTE               | CENTRAL | SUR     | PRODUCCIÓN<br>BPPD | PORCENTAJE<br>DE<br>PRODUCCIÓN | TOTAL<br>POZOS |
| BM                   | 133                 | 99      | 57      | 644,11             | 51,9%                          | 289            |
| SW                   | 65                  | 88      | 99      | 293,14             | 23,6%                          | 252            |
| HL                   | 285                 | 220     | 386     | 282,68             | 22,8%                          | 891            |
| GL                   | 3                   | 0       | 0       | 2,49               | 0,2%                           | 3              |
| PL                   | 4                   | 0       | 0       | 8,57               | 0,7%                           | 4              |
| FY                   | 6                   | 1       | 1       | 9,16               | 0,7%                           | 8              |
| SUBT<br>TOTAL        | 496 408 543 1240,16 |         | 1240,16 | 100,0%             | 1447                           |                |
| PT                   | 597                 | 428     | 409     |                    |                                | 1434           |
| TOTAL<br>DE<br>POZOS | 1093                | 836     | 952     | 1240,16            | 100,0%                         | 2881           |

Tabla N° 7. Producción promedio diaria del Campo Ancón, año 2012.

Fuente: Pacifpetrol.

En la siguiente figura N°14, se muestra la producción del Campo Ancón de acuerdo a los métodos de levantamiento artificial. La mayor producción de petróleo es por el método de Bombeo Mecánico, como podemos observar tiene 50% de producción diaria.

En la siguiente figura N°14, se halla graficado el resumen de la Tabla N° 7.

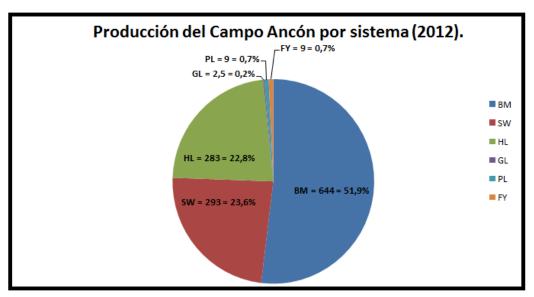



Fig. 14. Producción porcentual del Campo Ancón.

Fuente: Pacifpetrol.

## CAPÍTULO III

CONSIDERACIONES PARA SELECCIÓN DE UN SISTEMA DE LEVANTAMIENTO ARTIFICIAL.

## 3.1 Descripción.

Cuando los reservorios no tienen la presión suficiente para levantar los fluidos producidos desde el fondo de los pozos hasta la superficie, las compañías buscan alternativas de levantamiento artificial. En ciertas ocasiones se acostumbra a estudiar las condiciones de cada pozo, para luego, recomendar qué tipo de levantamiento artificial es el más apropiado. Pero, en la mayoría de casos de la vida práctica, el objetivo es buscar pozos cuyas condiciones permitan aplicarles un sistema de Levantamiento Artificial específico, que ya fue predeterminado por la compañía. Este es el caso del presente estudio de optimización. La mejor opción a utilizar en una campaña de optimización de sistemas en el Campo Ancón es el Bombeo Mecánico debido a la amplia experiencia mecánica, operativa, logística y gerencial.

Son muchas las condiciones que se deben estudiar antes de recomendar la implementación de un SLA para un determinado pozo. A continuación se detallan varias de ellas clasificadas de acuerdo a su naturaleza:

#### 3.2 Características del pozo.

Entre las características de los pozos constan los rangos de profundidad, diámetros de casing entre otros, con esta información se puede obtener el rendimiento o la capacidad de fluido que contiene el pozo en sus instalaciones de fondo.

#### 3.2.1 Rangos de profundidad.

La profundidad de un pozo puede constituirse como una limitante en la aplicación de ciertos sistemas. Aunque, en la actualidad la tecnología ha ampliado el espectro de aplicación de todos los SLA, todavía existen restricciones para los casos de Bombeo Cavidad Progresiva y Bombeo Mecánico. En todo caso, conociendo que la profundidad de los pozos productivos del Campo Ancón no supera los 5000 ft y que los requerimientos de producción son bajos, la profundidad no es un problema y cualquier SLA ( Bombeo Mecánico, Bombeo Cavidad Progresiva ,Bombeo Electrosumergible, Bombeo Hidráulico, Gas Lift o Plunger Lift ) se podría aplicar si solo considera la variable "profundidad".

## 3.2.2 Desviación de pozos.

Los pozos desviados generan problemas de operación para los SLA que emplean sartas de varillas como elemento de transmisión de movimiento entre el equipo de superficie y el equipo de subsuelo. Desviaciones mayores a 15° por cada 100 ft causan severo desgaste de varillas y desembocan en problemas de taponamiento, embastonamiento de bombas de subsuelo y rotura de tubería.

Los pozos del Campo Ancón, salvo mínimas excepciones, fueron perforados verticalmente, por esta razón la limitante desaparece y se pueden aplicar todos los sistemas (Bombeo Mecánico, Bombeo Cavidad Progresiva, Bombeo Electrosumergible, Bombeo Hidráulico, Gas Lift o Plunger Lift).

#### 3.2.3 Diámetros de casing.

Los diámetros de casing reducidos son un problema cuando se requiere bombas de gran capacidad para producir mucho fluido.

En el Campo Ancón se conoce que el límite máximo de producción de un pozo es de 100 BPD (agua+petróleo), por lo que las bombas a utilizar siempre tendrán diámetros convencionales.

#### 3.3 Características del fluido.

Es muy importante saber el comportamiento de un fluido del yacimiento, para definir el material del equipo a utilizar a fin de adoptarlo convenientemente a su operación del campo. Al respecto, debemos tomar encuenta las respectivas características, como presencia de sólidos o fluidos viscosos que a continuación se definen cada una de ellas:

#### 3.3.1 Fluidos viscosos

La baja viscosidad del petróleo producido en el Campo Ancón nos permite concluir que no habrá problemas para el funcionamiento de ningun SLA.

## 3.3.2 Presencia de sólidos, arenas o sal libre

Los sólidos pueden generar efectos indeseables en la bomba, llegando al punto de paralizar el movimiento del pistón en el barril y, a su vez, crear incrementos de esfuerzos en sartas de varillas.

La presencia de arena ocasiona un rápido desgaste, provocando un daño permanente en la bomba.

La experiencia en el Campo nos indica que menos del 10% de pozos tienen problemas de depositación de sólidos en bombas y en el ingreso de fluido hacia el tubing.

En los pozos con producción de sólidos no se podrá aplicar Bombeo Electrosumergible ,y Bombeo Hidráulico Reciprocante; a su vez, se tendrá problemas para Bombeo Mecánico, Bombeo Hidráulico Jet y Gas Lift.

En todo caso, el Campo cuenta con unidades de pulling que inmediatamente estarían disponibles para realizar servicios en los pozos y solucionar tales problemas.

#### 3.3.3 Fluidos parafínicos

Los fluidos parafínicos en el reservorio reducen la permeabilidad de la roca y obstruyen el paso del crudo en la cara de la formación.

Dichos fluidos parafínicos en el pozo causan daños al equipo de subsuelo y reducen el diámetro efectivo de las tuberías de producción en las facilidades; sin embargo, en estos casos, no son un gran problemas porque su presencia en el campo es mínima.

La experiencia en el Campo Ancón nos indica que menos del 5% de los pozos que, actualmente, trabajan con bombeo mecánico tienen problemas de depositación de parafina.

En todo caso, el campo cuenta con unidades de pulling y puede realizar tratamientos parafínicos con aceite caliente para solucionar los problemas.

Si se encontraran pozos parafínicos, no se podría aplicar, ni Bombeo Cavidad Progresiva, ni Bombeo Electrosumergible; las opciones, en este caso, serían Bombeo Mecánico, Bombeo Hidráulico, Gas Lift o Plunger Lift.

#### 3.3.4 Fluidos corrosivos y escalas

Como los fluidos corrosivos en el Campo Ancón no existen, cualquier SLA se podría aplicar si se considera solo ese parámetro.

Las depositaciones de escala en bombas de subsuelo en el Campo Ancón se da en un número muy reducido de pozos y despúes de largos períodos sin intervenciones de pulling.

#### 3.4 Características del yacimiento.

Las características que se presentan en un yacimiento, tales como: volumen total de fluido, producción de gas, y temperatura, nos sirven para estimar la aplicación de un sistema de extracción. A continuación se describe lo mencionado anteriormente.

#### 3.4.1 Limitación de sumergencia en la bomba

Es de vital importancia el aporte del fluido del yacimiento. Un pozo de nivel corto (baja presión de fondo) no es recomendable para ningún sistema de extracción con excepción de Swab. El Bombeo Mecánico require menores presiones de intake y niveles de sumergencia respecto a todos los otros sistemas.

Esta condición convierte al Bombeo Mecánico como la opción más atractiva en el Campo Ancón si se toma en cuenta que la baja presión de los reservorios permitirá alcanzar niveles dinámicos y estáticos bastante bajos en los pozos.

#### 3.4.2 Manejo de gas

Siempre que se extrae petróleo, se producen también fluidos asociados como el agua y el gas, Por lo tanto, al disminuir la presión en el fondo del pozo, mayor cantidad de gas saldrá y, puede llegar a existir mayor volumen de gas que de líquido en la succión de la bomba de subsuelo. Bajo estas condiciones la eficiencia volumétrica de la bomba se ve severamente afectada. En el Campo Ancón la producción de gas no generaría mayores inconvenientes para la operación de ningún SLA.

Actualmente existen pozos con alta producción de gas > 20000 SCFD y GOR > 500 que operan sin mayores problemas por Bombeo Mecánico.

#### 3.4.3 Limitaciones de temperaturas

La temperatura de fondo no es un problema que puede afectar a los equipos de subsuelo en el Campo Ancón. De todos modos, las bombas de subsuelo de Bombeo Mecánico soportan mayores temperaturas que cualquier otro tipo de bomba.

### 3.4.4 Limitaciones por altos volúmenes.

El aporte del fluido del yacimiento al pozo es un parámetro importante para tomar en cuenta al momento de elegir un SLA. Si se tuviera que levantar altos caudales de producción se debería elegir a sistemas como BCP, BES, Bombeo Hidráulico o Gas Lift.

Por tener bajos caudales de producción en el Campo Ancón, opciones como el Bombeo Mecánico, Plunger Lift o Inyección Intermitente de Gas Lift serían las más apropiadas.

#### 3.5 Características operativas externas.

En este ítem se definen las características operativas que existen en el Campo Ancón para la evaluación de cambio de sistema.

#### 3.5.1 Problemas climáticos.

Los fenómenos climáticos no generan dificultad en las operaciones que se realizan diariamente en el campo debido a que el clima es moderado.

#### 3.5.2 Ubicación en zonas pobladas

Esta condición no dificulta el uso de ningún SLA debido que los lugares de implementación están en las secciones 66,67,74 y Tigre que son alejadas de cualquier asentamiento urbano.

#### 3.5.3 Posibilidad de control de fallas.

En el Campo Ancón se cuenta con equipos para toma de niveles acústicos y cartas dinamométricas de bombas de subsuelo que proveen un análisis confiable de las fallas que se pueden producir solo en pozos de Bombeo Mecánico.

#### 3.5.4 Experiencia operativa disponible en el Campo.

El personal operativo, técnico, de mantenimiento, de compras, de seguridad industrial e, incluso, de medio ambiente, está ampliamente familiarizado con el sistema de levantamiento por Bombeo Mecánico. Esta es la razón fundamental por la que se elgiría al Bombeo Mecánico, sobre cualquier otro SLA, como la mejor opción en una campaña de optimización.

## 3.5.5 Fuentes de energía.

Con excepción de Plunger Lift todos los SLA requieren de fuentes de energía externas para dar marcha a motores, compresores o bombas. Los principales tipos de energía son electricidad, gasolina, diesel, y gas. La realidad del Campo Ancón nos obliga a buscar alternativas baratas para la generación de energía. El gas producido en los pozos puede ser aprovechado directamente para mover motores a gas o indirectamente para generar electricidad, y mover motores eléctricos.

La principal limitante al utilizar motores eléctricos es la necesidad de tender líneas de transmisión.

Tomando en cuenta todo lo expuesto, los motores Arrow a combustión interna que se utilizan para las unidades de bombeo mecánico son la alternativa mas viable a utilizar en el Campo Ancón porque emplean el gas del pozo directamente. En caso de que los pozos no produzcan gas, se puede tender líneas de gas desde otros pozos o se puede utilizar tanques de gas que son llenados en la planta de gas natural vehicular del Campo a bajo costo.

## 3.5.6 Logística disponible en el campo.

Para la aplicación de ciertos sistemas como Gas Lift y Bombeo Hidráulico se necesita Compresores, bombas, manifolds de alta presión, líneas de inyección y líneas de producción, que la empresa no dispone. Para BCP o BES, se necesita energía eléctrica en cada pozo. El campo cuenta con balancines, tanques, cabezales, lubricadores, válvulas y otros equipos que se podrían utilizar para Bombeo Mecánico y Plunger Lift,

#### 3.6 Ventajas y desventajas de Bombeo Mecánico

Hay dos premisas a tener en cuenta: a) Ningún sistema es capaz de cubrir todos los requerimientos simultáneamente; b) Como cualquier otro método de levantamiento artificial, el Bombeo Mecánico tiene sus ventajas y contras que son importantes cuando se determina que método de levantamiento se va ha utilizar para una aplicación en particular.

El sistema de extracción por Bombeo Mecánico tiene las siguientes ventajas y desventajas.

#### Ventajas

- ✓ Diseño simple.
- ✓ Facilidad de cambiar la unidad de superficie entre pozos a un costo minímo.
- ✓ Eficiencia aceptable y facilidad de operación en campo.
- ✓ Confiabilidad y bajo mantenimiento.
- ✓ Capacidad de bombear en pozos con baja presión de fondo.
- ✓ Tolerancia de altas temperaturas (crudos pesados y livianos).
- ✓ Capacidad de aplicar motores a gas o eléctricos.
- ✓ Facilidad de tratamiento de corrosión y escala.

## Desventajas

✓ Capacidad de bombear caudales relativamente bajos.

- ✓ Problemas en pozos desviados mayor a 15°.
- ✓ Necesidad de gran espacio en superficie, no recomendable en plataformas costa afuera y locaciones urbanas.
- ✓ Baja tolerancia a la producción de sólidos.
- ✓ Baja eficiencia volumétrica en pozos con alta producción de gas.
- ✓ Susceptibilidad a la formación de las parafinas.
- ✓ Poca resistencia al contenido de H<sub>2</sub>S.

#### 3.7 Consideraciones de diseño de Bombeo Mecánico

Una vez bien definidas las profundidades, el nivel de fuido, las características de fluido (API, sólidos, escala, parafina), el aporte del yacimiento y, las profundidad de los punzados productivos, el Ingeniero de Petróleo, predice los requerimientos de:

- ✓ Carga
- ✓ Potencia del motor
- ✓ Contrabalance necesario
- ✓ Relaciones de esfuerzos
- ✓ Torque máximo en la caja reductora
- ✓ Tasa de producción esperada, etc.

Finalmente selecciona el equipo de subsuelo (bomba, varillas, y tubería) y el de superficie (Unidad de Bombeo Mecánico).

## **CÁPITULO IV**

SELECCIÓN DEL SISTEMA DE LEVANTAMIENTO ARTIFICIAL A UTILIZAR EN EL PROYECTO DE OPTIMIZACIÓN.

#### 4.1 Descripción de condiciones de los pozos.

Una vez bien definidas las caraterísticas de los pozos, fluidos, yacimiento y las condiciones operativas externas, se evaluó la factibilidad que tendría cada sistema para ser aplicado en el presente proyecto. A continuación se enumeran las limitantes que cada sistema tiene:

## Bombeo por Cavidad Progresiva (BCP).

Las razones por las que no se eligió BCP son:

- En pozos parafínicos se tendría problemas.
- Falta de experiencia operativa en el Campo Ancón.
- No existe energía eléctrica para los motores de superficie; utilizar diesel sería muy costoso.

## Bombeo Eléctrico Sumergible (BES).

Las razones por las que no se eligió BES son:

- Los niveles de sumergencia de la bomba serían demasiado bajos en todos los pozos.
- El volumen de producción total sería muy bajo en todos los pozos.
- En ciertos pozos podría haber presencia de sólidos o arenas que dañarían las bombas electrosumergibles.
- En ciertos pozos podría haber presencia de fluidos parafínicos
- El personal del campo no está familiarizado operativamente con el sistema.
- No existe energía eléctrica dentro del campo para poner en marcha las bombas.

#### Bombeo Hidráulico (BH).

El Bombeo Hidráulico no es recomendable para la implementación en el proyecto del Campo Ancón porque:

- Todos los pozos proporcionarían muy bajos niveles de sumergencia a las bombas.
- El volumen de producción total sería muy bajo en todos los pozos.
- El personal del campo no está familiarizado operativamente con el sistema.
- En el campo no se cuenta con separadores, bombas ni una serie de elementos específicos de alto costo que se requieren para poner en marcha un Sistema de Bombeo Hidráulico.

## Plunger Lift (PL).

El sistema de Plunger Lift no se considera como una opción viable porque se requiere pozos que acumulen altas presiones de cabeza para su operación.

## Gas Lift (GL).

A pesar de que existen pozos en el campo Ancón trabajando por Gas Lift, su implementación a gran escala en el proyecto se estima muy complicada porque se requeriría de plantas compresoras y líneas de inyección para gas a altas presiones, lo cual, sería muy costoso y tomaría mucho tiempo.

#### Bombeo Mecánico (BM).

El sistema de Bombeo Mecánico es el que mejor se acopla a la realidad del campo; su uso es común actualmente; y, su aplicación no se halla limitada por características de fluido, de pozo, del yacimiento o de la operación.

En la siguiente tabla se resume el proceso de selección para implementar en el proyecto. Para el efecto, se realizó un contraste individual de cada opción para el levantamiento artificial con la realidad del Campo Ancón. De  $\,$  este modo se determinó el SLA que mejor se acomoda a las condiciones del Campo. (Ver Tabla  $\,$  N $^{\circ}$  8)

| CONSIDERACIONES PARA SELECCIÓN<br>DE UN MÉTODO DE LEVANTAMIENTO<br>ARTIFICIAL | CITTLACTON NET            | BM | ВСР | BES | ВНЈ | BHR | GL | PL |
|-------------------------------------------------------------------------------|---------------------------|----|-----|-----|-----|-----|----|----|
| CARACTERISTICAS DEL POZO                                                      |                           |    |     |     |     |     |    |    |
| Rangos de profundidad.                                                        | 100 - 5000 ft             | 0  | 0   | 0   | 0   | 0   | 0  | 0  |
| Desviación de pozos.                                                          | 0° (Pozos verticales)     | 0  | 0   | 0   | •   | •   | •  | •  |
| Diámetros De Casing                                                           | 4,5 - 16 pulg.            | 0  | 0   | •   | •   | •   | •  | •  |
| CARACTERISTICAS DEL FLUIDO                                                    |                           |    |     |     |     |     |    |    |
| Viscosidad                                                                    | Baja                      | 0  | 0   | 0   | 0   | 0   | 0  | 0  |
| Presencia de sólidos arenas o sal libre                                       | 10% de los pozos          | 0  | 0   | 0   | 0   | 0   | 0  | 0  |
| Fluidos parafinicos                                                           | 5% de los pozos           | 0  | 0   | 0   | 0   | 0   | 0  | 0  |
| Fluidos corrosivos y escalas                                                  | 5% de los pozos           | 0  | 0   | 0   | •   | 0   | 0  | •  |
| CARACTERISTICAS DEL YACIMIENTO                                                |                           |    |     |     |     |     |    |    |
| Niveles de sumergencia de las bomba                                           | Bajo                      | 0  | 0   | 0   | 0   | 0   | 0  | 0  |
| Producción de gas                                                             | Bajo a moderado           | 0  | 0   | 0   | 0   | 0   | 0  | 0  |
| Temperatura de fondo                                                          | Baja                      | 0  | 0   | 0   | 0   | 0   | 0  | 0  |
| Volúmenes de producción total                                                 | Bajos                     | 0  | 0   | 0   | 0   | 0   | 0  | 0  |
| CARACTERISTICAS OPERATIVAS<br>EXTERNAS                                        |                           |    |     |     |     |     |    |    |
| Problemas climáticos.                                                         | No existen                | 0  | 0   | 0   | •   | •   | •  | •  |
| Zonas pobladas                                                                | No existen                | 0  | 0   | 0   | 0   | 0   | 0  | 0  |
| Posibildad de control de fallas.                                              | Solo para Bombeo Mecánico | 0  | 0   | 0   | 0   | 0   | 0  | 0  |
| Experiencia operativa disponible en el Campo.                                 | Excelente para BM         | 0  | 0   | 0   | 0   | 0   | 0  | 0  |
| Fuentes de energia                                                            | Gas de los pozos          | 0  | 0   | •   | •   | •   | •  | •  |
| Logistica disponible                                                          | Solo para BM- PL          | 0  | 0   | •   | •   | •   | •  | •  |
| Sistemas aplicables                                                           | 0                         |    |     |     |     |     |    |    |
| Sistemas no aplicables                                                        | 0                         |    |     |     |     |     |    |    |

Tabla N°8 Selección de sistema por levantamientos artificiales. Realizado por: Jenny Guale.

## 4.1.1 Procedimiento para selección de pozos para cambio de sistema.

Los indicadores económicos que se manejan en la compañía ponen en evidencia que el costo por barril producido por Swab es mucho mayor al costo por barril producido por Bombeo Mecánico. A diferencia de los pozos de Herramienta Local, los pozos de Swab poseen tubería por lo que sería más barato instalar Bombeo Mecánico en pozos de Swab. Estas son las principales razones por las que se decide eliminar pozos de Swab cambiándolos a Bombeo Mecánico. Para elegir los pozos de Swab más idóneos a cambiar se llevó a cabo el siguiente procedimiento.

#### 4.1.1.1 Restauraciones de nivel de fluido con muestreador.

Una vez determinado el pozo a estudiarse, se realiza una programación diaria para medir la profundidad de nivel de petróleo y agua dentro del pozo. (Ver Tabla N° 9)

| TAGIT ETTOL OF |           |       |      |           |        |         |         |                            |             |       |         |           | PM P | r | Р              |                | *** | м м            | М        | М            |            | м м | MG<br>P  | Р            | MG MG        | P P | М            | MG PN   | ИМ       | PM<br>M      |         |                |
|----------------|-----------|-------|------|-----------|--------|---------|---------|----------------------------|-------------|-------|---------|-----------|------|---|----------------|----------------|-----|----------------|----------|--------------|------------|-----|----------|--------------|--------------|-----|--------------|---------|----------|--------------|---------|----------------|
| POZO           | POTENCIAL | CICLO | BPPD | TD (PIES) | ACOPIO | ZONAS   | TUBERIA | PROFUNDIDAD<br>HERRAMIENTA | HERRAMIENTA | HORA  | JORNADA | FECHA     | AGUA | 7 | 4 01-oct - sáb | 4 02-oct - dom |     | 4 05-oct - mié | 06-oct - | 08-oct - sáb | 09-oct - c | ٠   | 11-oct - | 13-oct - Jue | 14-oct - vie |     | 16-oct - dom |         | 19-oct - | 20-oct - jue |         | 4 23-oct - dom |
| ANCOO64        | 2         | 6     | 0,33 | 1920      | 74     | CENTRAL | 23/8    | 1888,3                     | STVF        | 14:41 | DIA     | 11-oct-12 | 0    | D |                |                | 2   |                |          |              |            | 2   |          |              |              |     | 2            |         |          |              | 2       |                |
| ANC0065        | 4         | 7     | 0,57 | 2800      | 74     | CENTRAL | 23/8    | 2372,9                     | STVF        | 19:00 | NOCHE   | 6-oct-12  | 0    | N |                |                |     |                | 3        |              |            |     |          | 4            |              |     | ┙            | ╙       | Ш        | 3            | $\perp$ | Ш              |
| ANCOO84        | 3         | 7     | 0,43 | 2290      | 74     | CENTRAL | 23/8    | 1770,11                    | CRUCETA     | 9:08  | DIA     | 6-oct-12  | 0    | D |                |                |     |                | 2,5      |              |            |     |          | 3            |              |     | ┙            | L       | Ш        | 3            | $\perp$ | Ш              |
| ANCOO87        | 2         | 3     | 0,67 | 2150      | 74     | CENTRAL | 23/8    | 1868,2                     | STVF        | 15:57 | DIA     | 11-oct-12 | 0    | D |                |                | 2   |                | 2        |              | 2          |     |          | 2            |              | 2   |              | 2       |          | 2            |         | Ш              |
| ANCO104        | 3         | 2     | 1,50 | 3050      | 74     | CENTRAL | 23/8    | 2804,1                     | ASIENTO     | 22:17 | NOCHE   | 10-oct-12 | 0    | N | 3              |                | 3   | 3              |          | 4            | 4          |     | 3,5      | 4            |              | 3   | 3,           | ,5      | 3,5      | 4            |         |                |
| ANC0120        | 4         | 4     | 1,00 | 2110      | 74     | CENTRAL | 23/8    | 1889,5                     | STVF        | 23:50 | NOCHE   | 11-oct-12 | 2    | N | 2              |                | 2   | 2              |          | 2            | 2          |     | 2        | 2            |              | 2   | 2            | 2       | 2,5      | 2            |         | 2              |
| ANC0144        | 2,5       | 2     | 1,25 | 3401      | 74     | CENTRAL | 23/8    | 2864                       | STVF        | 0:30  | NOCHE   | 11-oct-12 | 1    | N | 3              |                | 3   | 3              | 2        | 2,5          | 2,5        |     | 2,5      | 2,5          |              | 3   | 3            | 3       | 2,5      | 2            |         | 3              |
| ANCO145        | 3         | 8     | 0,38 | 2392      | 74     | CENTRAL | 23/8    | 2014,1                     | STVF        | 22:37 | NOCHE   | 22-sep-12 | L    | N |                |                |     |                |          | 3            |            |     |          |              |              |     | 3            | $\perp$ |          | Щ            | L       | L              |
| ANC0146        | 2         | 2     | 1,00 | 3000      | 74     | CENTRAL | 23/8    | 2649,11                    | STVF        | 21:40 | NOCHE   | 10-oct-12 | 0    | N | 2              | 2              | 2 2 | 2              | 2        | 2 2          | 2          | 2   | 1        | 2 2          | 2            | 1   | 1 1          | 1 1,5   | 1        | 1 2          | 2 2     | 2              |
| ANC0150        | 5         | 20    | 0,25 | 3400      | 74     | CENTRAL | 23/8    | 2463,7                     | CRUCETA     | 5:12  | NOCHE   | 11-sep-12 | 0    | D |                |                |     |                |          |              |            |     |          |              |              | 30  |              | ⊥       | Ш        |              | L       | L              |
| ANC0151        | 3         | 2     | 1,50 | 3248      | 74     | CENTRAL | 23/8    | 2932,8                     | STVF        | 21:15 | NOCHE   | 10-oct-12 | 0    | N | 3              |                | 3   | 3              |          | 3            | 2,5        |     | 3        | 3            |              | 3   | 3            | 3       | 2,5      | 3            |         | 2              |
| ANC0153        | 4         | 5     | 0,80 | 3271      | 74     | CENTRAL | 23/8    | 2360                       | STVF        | 14:51 | DIA     | 11-oct-12 | 0    | N |                |                |     |                |          |              | 3          |     |          |              | 0            |     |              | $\perp$ | 0        |              | L       | L              |
| ANCO162        | 2,5       | 3     | 0,83 | 910       | 66     | CENTRAL | 23/8    | 906,2                      | STVF        | 22:40 | NOCHE   | 11-oct-12 | 0    | N |                |                | 3   |                | 3        |              | 3          |     |          | 3            |              | 3   |              | 2,5     |          | 3            |         | Ш              |
| ANC0163        | 3         | 2     | 1,50 | 3200      | 66     | CENTRAL | 23/8    | 3105,6                     | ASIENTO     | 19:42 | NOCHE   | 10-oct-12 | L    | N |                | 3              | 3   |                | 3        | 3            |            | 3   |          | 3            | 3            |     | 3            | 3       |          | 3            | 3       |                |

Tabla N° 9 Calendario de Swab.

Fuente: Pacifpetrol.

El equipo de mediciones físicas, cumpliendo con la programación proporcionada por Ingeniería, realiza tomas periódicas en campo de la siguiente forma:

Se coloca un carrete con cabo en la llanta de una camioneta que actúa como malacate para bajar y subir el cabo.

Con el trípode se procede a ubicar en una posición céntrica del contrapozo para lograr estabilización. (Ver Fig. 15).



Fig. 15 Equipo de wire line

Fuente: Pacifpetrol

Se pasa la piola por una polea en el trípode; con ella se amarra un barrilito toma muestras y, se deja que la piola con el barril baje por gravedad dentro del pozo. La piola estará marcada para conocer la profundidad a la que detecte cualquier novedad. Si el barril chocara en su descenso con colapsos de casing, cambios de casing o nivel de fluido, se observará una perturbación en la polea del trípode. Una vez que se ha detectado nivel de fluido, el operador pone en marcha el carro para levantar el barril muestreador y observar el tipo de fluido que recupera. El proceso se repetirá cuantas veces sea necesario hasta determinar el nivel de petróleo, el contacto agua petróleo (si hubiere) y el fondo del pozo.

### 4.1.1.2 Construcción de curvas de restauración de nivel.

Después que el equipo de mediciones físicas haya realizado las tomas diarias de nivel de fluido, se recopilan los datos y mediante fórmulas se las convierte en volumen para generar tablas y gráficos que describen el comportamiento de afluencia de cada pozo.(Ver Tabla N°10 y Fig.16)

|            | ANC0120 (4/4) |                 |            |            |       |      |                   |      |                                                               |  |  |  |  |
|------------|---------------|-----------------|------------|------------|-------|------|-------------------|------|---------------------------------------------------------------|--|--|--|--|
| FECHA      | HORA          | DÍAS DESPUÉS DE | Φ CASING 1 | Φ CASING 2 | NIVEL | CAP  | Prof. Instalación | BI S | COMENTARIO                                                    |  |  |  |  |
| ILONA      | ПОКА          | INTERVENCIÓN    | in         | in         | ft    | ft   | ft                | DLO  | COMENTARIO                                                    |  |  |  |  |
| 11/06/2012 | 21:00         | 1               | 8,625      | 5,75       | 1800  | 1870 | 1890              | 5,1  | 0                                                             |  |  |  |  |
| 12/06/2012 | 21:00         | 2               | 8,625      | 5,75       | 1750  | 1870 | 1890              | 6,7  | Su máximo nivel es 210' = 9.6 bls. Normalmente, se recupera   |  |  |  |  |
| 13/06/2012 | 8:40          | 3               | 8,625      | 5,75       | 1720  | 1870 | 1890              | 7,6  | 4 bls cada 4 días pero para                                   |  |  |  |  |
| 14/06/2012 | 20:10         | 4               | 8,625      | 5,75       | 1690  | 1870 | 1890              | 8,6  | esta restauración se dejó al                                  |  |  |  |  |
| 15/06/2012 | 19:57         | 5               | 8,625      | 5,75       | 1670  | 1870 | 1890              | 9,2  | pozo durante 7 días y acumuló<br>9 bls. Se recuperó 9 bls por |  |  |  |  |
| 16/06/2012 | 19:40         | 6               | 8,625      | 5,75       | 1660  | 1870 | 1890              | 9,6  | SW.                                                           |  |  |  |  |
| 17/06/2012 | 18:05         | 7               | 8,625      | 5,75       | 1660  | 1870 | 1890              | 9,6  | 571.                                                          |  |  |  |  |

Tabla N° 10 Restauración de nivel de fluido.

Fuente: Pacifpetrol.

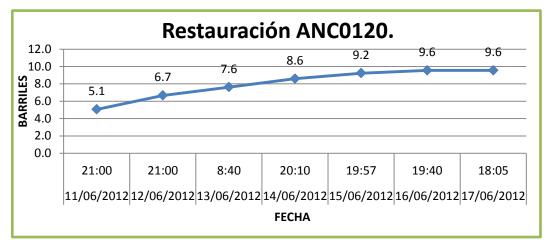



Fig. 16. Curva de restauración de nivel de fluido.

Fuente: Pacifpetrol

# 4.2 Condiciones de superficie.

En recorrido de campo, se verificaron las condiciones actuales de todos los pozos candidatos y se indentificaron los trabajos de acondicionamiento en cabezales y locaciones que se requieren para implementar Bombeo Mecánico.

# 4.2.1 Descripción de tipos y condiciones de cabezales.

El cabezal del pozo es el conjunto de válvulas y otros accesorios que conforman el equipo de superficie de los pozos.

Hay diferentes tipos, tamaños, series y marcas, y están diseñados para soportar las presiones máximas esperadas una vez concluida la perforación.

En el Campo Ancón se practica la medición de caudal de gas de los pozos con el fin de determinar aquellos que puedan ser captados para la producción de gasolina natural. El cabezal más apto para medición de caudales o implementación de Bombeo Mecánico debe estar herméticamente sellado y debe tener dos salidas de casing para en el futuro alimentar el motor de la Unidad Bombeo Mecánico y para poder despresurizar o captar el gas del pozo. (Ver Fig. 17).



Fig. 17 Tipo de cabezal apto para Bombeo Mecánico y captación de gas.

Fuente: Pacifpetrol.

En la Fig. N° 18, muestran los tipos de cabezales que pertenecen a pozos que son intervenidos por el método de Swab; en este caso, se observa en la figura una línea de gas que sale del cabezal debido a que este pozo alimenta gas al motor de un pozo cercano.



Fig. 18 Cabezales de pozos de SW.

Fuente: Pacifpetrol

En la Fig. 19, los pozos, ANC0194 y ANC0191, intervenidos por el método de extracción por Herramienta Local, se observa que se necesitaría fabricar y colocar cabezales herméticos con salidas y válvulas para poder implementar sistemas de Bombeo Mecánico.



Fig. 19 Cabezales de pozos de HL.

Fuente: Pacifpetrol.

# 4.2.2 Distancia a tanques o subestaciones.

Antes de seleccionar un pozo candidato se debe tomar en cuenta su situación geográfica con respecto a tanques o subestaciones existentes (Ver Fig. 20).



Fig. 20 Subestación Fuente: Pacifpetrol.

La presión a la salida de la línea de producción depende del nivel de sumergencia de la bomba. Es bien conocido que en el Campo Ancón los niveles de sumergencia son bajos, por esta razón, se vuelve complicado llevar la producción de pozos de Bombeo Mecánico a tanques demasiado lejanos. En todo caso, se realizaron varios recorridos de campo para identificar los puntos de recolección más idóneos para los pozos en los que se implementará Bombeo Mecánico.

# CAPÍTULO V

# ANÁLISIS TÉCNICO DE POZOS CANDIDATOS PARA CAMBIO DE SISTEMA.

# 5.1 Criterio inicial de selección de pozos.

Recapitulando lo antes mencionado, el SLA por Bombeo Mecánico fue escogido como la mejor opción para emprender una campaña de optimización. El siguiente reto consistiría en seleccionar aquellos pozos que reunan las mejores condiciones para que se les aplique dicho SLA. Un grupo de pozos de Swab fueron elegidos inicialmente para ser estudiados porque tienen la ventaja de contar con tubería de producción, si se los compara con los de Herramienta Local. En resumen, el criterio inicial de los pozos candidatos objeto del estudio es el siguiente:

"Pozos actualmente en Swab, ubicados en la Zona Central del Campo Ancón, con producción mayor o igual a 3 bls por intervención y ciclo de trabajo mayor a 2 días. Se eliminó de la lista a los pozos ANCDD01, ANC0150, ANC0180 y ANC1949 por tener locación en malas condiciones, trabajar con nivel corto o por malas condiciones de casing."

Aplicando el criterio inicial de selección a los pozos del Campo Ancón, se obtuvo el siguiente listado de pozos de los que fueron evaluados:

| POZO    | POTENCIAL | CICLO | INTERVENCIONES<br>POR DÍA | BPPD | TD   |
|---------|-----------|-------|---------------------------|------|------|
|         | BLS       | DÍAS  |                           |      | FT   |
| ANC0065 | 4         | 7     | 0,14                      | 0,57 | 2800 |
| ANC0084 | 3         | 7     | 0,14                      | 0,43 | 2290 |
| ANC0120 | 4         | 4     | 0,25                      | 1,00 | 2110 |
| ANC0145 | 3         | 8     | 0,13                      | 0,38 | 2392 |
| ANC0153 | 4         | 5     | 0,20                      | 0,80 | 3271 |
| ANC0162 | 3         | 3     | 0,33                      | 1,00 | 910  |
| ANC0171 | 8         | 8     | 0,13                      | 1,00 | 3382 |
| ANC0173 | 8         | 4     | 0,25                      | 2,00 | 3503 |
| ANC0175 | 4,5       | 5     | 0,20                      | 0,90 | 3500 |
| ANC0301 | 6         | 8     | 0,13                      | 0,75 | 1005 |
| ANC0438 | 6         | 5     | 0,20                      | 1,20 | 3493 |
| ANC0558 | 10        | 4     | 0,25                      | 2,50 | 4570 |
| ANC0655 | 7         | 8     | 0,13                      | 1,00 | 3425 |
| ANC0663 | 3         | 6     | 0,17                      | 0,50 | 3439 |
| ANC0791 | 8         | 4     | 0,25                      | 2,00 | 4850 |
| ANC0793 | 4         | 2     | 0,5                       | 2    | 4100 |
| ANC0794 | 3         | 4     | 0,25                      | 0,75 | 3800 |

| POZO    | POTENCIAL | CICLO | INTERVENCIONES<br>POR DÍA | BPPD | TD   |
|---------|-----------|-------|---------------------------|------|------|
| ANC0796 | 10        | 4     | 0,25                      | 2,50 | 4489 |
| ANC1242 | 4         | 3     | 0,33                      | 1,33 | 5020 |
| ANC1254 | 12        | 3     | 0,33                      | 4,00 | 4750 |
| ANC1256 | 3         | 3     | 0,33                      | 1,00 | 3678 |
| ANC1266 | 3         | 3     | 0,33                      | 1,00 | 4946 |
| ANC1273 | 4         | 5     | 0,20                      | 0,80 | 4889 |
| ANC1276 | 3         | 4     | 0,25                      | 0,75 | 3691 |
| ANC1288 | 6         | 8     | 0,13                      | 0,75 | 4360 |
| ANC1493 | 3,5       | 4     | 0,25                      | 0,88 | 1013 |
| ANC1552 | 6         | 3     | 0,33                      | 2,00 | 1685 |
| ANC1555 | 3         | 4     | 0,25                      | 0,75 | 1873 |
| ANC1648 | 5         | 7     | 0,14                      | 0,71 | 5423 |
| ANC1705 | 3         | 6     | 0,17                      | 0,50 | 1417 |
| ANC1715 | 7         | 4     | 0,25                      | 1,75 | 4927 |
| ANC1836 | 3         | 5     | 0,20                      | 0,60 | 1250 |
| ANC1884 | 4         | 4     | 0,25                      | 1,00 | 4780 |
| TIG0010 | 10        | 5     | 0,20                      | 2,00 | 4002 |
| TIG0030 | 5         | 4     | 0,25                      | 1,25 | 4285 |
| TIG0035 | 7         | 5     | 0,20                      | 1,40 | 5904 |
| TIG0045 | 12        | 4     | 0,25                      | 3,00 | 3366 |
| TIG0056 | 3         | 4     | 0,25                      | 0,75 | 4256 |
| TIG0058 | 3         | 4     | 0,25                      | 0,75 | 4564 |
| TIG0060 | 6         | 4     | 0,25                      | 1,50 | 5013 |
| TIG0062 | 4         | 3     | 0,33                      | 1,33 | 4821 |

Tabla N° 11 Pozos actualmente operativos en Swab Fuente: Pacif<br/>petrol.

# 5.1.1 Análisis tipo para un pozo candidato seleccionado.

Todos los pozos del listado de la Tabla N°11 fueron objeto de estudio de restauración de nivel. Además, se realizaron inspecciones de campo para evidenciar las condiciones actuales de cabezal, la disponibilidad de gas en el pozo o en pozos cercanos, condiciones de acceso y locación y distancia a tanques o susbestaciones existentes.

# 5.1.2 Análisis de curva de restauración de nivel

**Zona:** UNCE **Pozo:** ANC0175 **Sección:** 74 **Potencial /Ciclo:** 4.5/5

|            | ANC0175 (4.5/5) |                 |          |       |      |                   |     |                       |  |  |  |  |  |
|------------|-----------------|-----------------|----------|-------|------|-------------------|-----|-----------------------|--|--|--|--|--|
| FECHA      | HORA            | DÍAS DESPUÉS DE | Φ CASING | NIVEL | CAP  | Prof. Instalación | BLS | COMENTARIO            |  |  |  |  |  |
| FECHA      | пока            | INTERVENCIÓN    | in       | ft    | ft   | ft                | DLO | COMENTARIO            |  |  |  |  |  |
| 24/07/2012 | 20:09           | 1               | 8,625    | 2370  | 2370 | 2370              | 0,0 | Al 4° día ya alcanzó  |  |  |  |  |  |
| 25/07/2012 | 19:10           | 2               | 8,625    | 2340  | 2370 | 2370              | 2,2 | su máximo nivel       |  |  |  |  |  |
| 26/07/2012 | 20:45           | 3               | 8,625    | 2330  | 2370 | 2370              | 2,9 | (estático), 50' = 3.6 |  |  |  |  |  |
| 27/07/2012 | 19:35           | 4               | 8,625    | 2320  | 2370 | 2370              | 3,6 | bls. El día 28 se     |  |  |  |  |  |
| 28/07/2012 | 21:05           | 5               | 8,625    | 2320  | 2370 | 2370              | 3,6 | intervino el pozo     |  |  |  |  |  |
| 28/07/2012 | 20:20           | 0               | 8,625    | 2370  | 2370 | 2370              | 0,0 | recuperando 4 bls.    |  |  |  |  |  |

Tabla N° 12 Resultados de restauración de nivel de un pozo seleccionado.

Fuente: Pacifpetrol

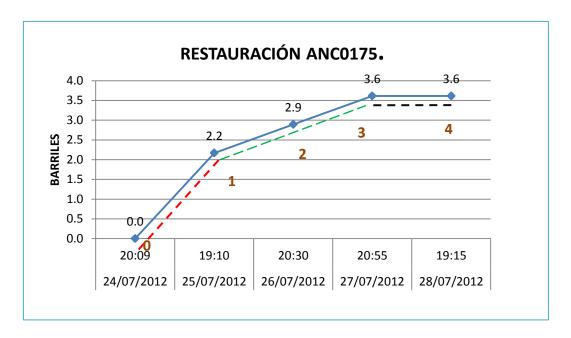



Fig. 21. Curva de restauración de un pozo seleccionado.

Fuente: Pacifpetrol

En la Fi. 21 se muestra el análisis de curva para un pozo factible de la sección 74; se trata del pozo: ANC0175 con potencial de 4.5 bls y su ciclo de 5 días actualmente operativo en Swab. En el análisis de una curva de restauración típica, se determina el punto de inflexión de la curva generada, que es el punto en el cual

la pendiente tiende a cero y se establece un máximo tiempo óptimo requerido para dejar al pozo en reposo, el cual, se conoce como tiempo óptimo de restauración.

En la primera medición realizada (punto 0), el pozo ha agotado nivel de fluido debido a que la unidad de Swab extrajo la totalidad de la columna de petróleo, es decir, en el punto 0. No se detecta nivel de fluido, solamente se topó el fondo de la instalación.

NL = profundidad de instalación - profundad del tope de fluido.

NL = 2370-2370

NL=0 pies.

En la segunda medición (punto 1), el pozo ha recuperado nivel hasta 2340', es decir, que el nivel de fluido ha subido 30 pies desde el día anterior..

 $NL = Prof Inst - Prof NL_{fluido}$ .

NL = 2370 - 2340

NL = 30 pies.

V bls = 
$$\frac{NL * (\Phi_{csg})^2}{1028.512}$$
  
V bls =  $\frac{30* (8.625)^2}{1028.512}$  = 2.16 bls

El la tercera y cuarta medición (puntos 2 y 3), el pozo continúa recuperando nivel. En la quinta medición (punto 4), el pozo ha alcanzado su máximo nivel de restauración (nivel estático); allí, su presión de fondo es igual a la presión hidrostática de la columna de fluido que es igual a 50° o 3.6 bls de petróleo.

La curva de restauración de nivel es una guía del comportamiento de cada pozo. En este caso la curva tiene un comportamiento positivo donde nos muestra una recuperación de nivel. En la tabla N°12, índica que el calendario establecido a este pozo, donde podemos observar que el término de la restauración es al 4 día y el volumen máximo de fluido es 3.6 bls de petróleo.

# 5.1.3 Análisis tipo para un pozo candidato no seleccionado.

La aplicación del sistema de extracción por Bombeo Mecánico en un pozo nuevo se ve limitada por:

- ✓ Bajos niveles estáticos de fluido.
- ✓ Zonas lejanas, de difícil acceso o locaciones problemáticas.
- ✓ Falta de gas en el pozo o pozos cercanos para alimentar motores.

En la siguiente tabla, se observa el seguimiento de restauración del pozo ANC0301.

**Zona:** UNC **Pozo:** ANC0301 **Sección:** 74 **Potencial /Ciclo:** 6/8

|            | ANC0301(6/8) |                 |          |       |     |                   |         |          |                                                        |  |  |  |
|------------|--------------|-----------------|----------|-------|-----|-------------------|---------|----------|--------------------------------------------------------|--|--|--|
| FECHA      | HORA         | DÍAS DESPUÉS DE | Φ CASING | NIVEL | CAP | Prof. Instalación | BLS OIL | BLS AGUA | COMENTARIO                                             |  |  |  |
| FEUTIA     | HUKA         | INTERVENCIÓN    | in       | ft    | ft  | ft                | BL3 UIL | DL3 AGUA | COMENTARIO                                             |  |  |  |
| 03/10/2012 | 4:00         | 1               | 7,5      | 973   | 983 | 983               | 0,5     | 0,0      | Dono coto conto consider co                            |  |  |  |
| 04/10/2012 | 4:35         | 2               | 7,5      | 968   | 978 | 983               | 0,5     | 0,3      | Para esta restauración se dejo que el pozo recupere su |  |  |  |
| 05/10/2012 | 1:30         | 3               | 7,5      | 963   | 978 | 983               | 0,8     | 0,3      | nivel por 5 días , por lo tanto                        |  |  |  |
| 06/10/2012 | 00:10        | 4               | 7,5      | 958   | 978 | 983               | 1,1     | 0,3      | alcanzo un nivel de 25' es<br>decir 1,4 bls.           |  |  |  |
| 07/10/2012 | 2:50         | 5               | 7,5      | 953   | 978 | 983               | 1,4     | 0,3      | uccii 1,4 013.                                         |  |  |  |

Tabla  $N^{\circ}$  13 Resultados de restauración de nivel de un pozo no seleccionado Fuente: Pacifpetrol




Fig. 22 Curva de restauración de un pozo no seleccionado.

Fuente: Pacifpetrol

En los puntos 0 y 1, el nivel de fluido en el pozo es mínimo debido a que la unidad de Swab extrajo la totalidad de la columna de petróleo.(Ver Fig. 22)

El pozo tiene una profundidad de instalación 983 pies, CAP: 983 y nivel del fluido 973' con un casing de 7 1/2" (Ver Tabla N°13).

El procedimiento de calculó se muestra a continuación:

# NL = profundidad de instalación - profundad del tope de fluido.

NL = 983-973

NL=10 pies.

En el punto 2, el nivel de petróleo del pozo ha subido hasta 963' y el de agua a 978' es decir hay 15 pies de nivel de petróleo, y 5 pies de agua.

$$NL = Prof Inst - Prof NL_{CAP}$$
.

$$NL = 983 - 978 = NL = 5$$
 pies.

V bls = 
$$\frac{NL * (\Phi_{csg})^2}{1028.512}$$

**V** bls = 
$$\frac{5*(7.5)^2}{1028.512}$$
 = 0.3bls de agua

NL = Prof Inst - Prof NL<sub>petróleo</sub>.

$$NL = 983 - 963 = NL = 20$$
 pies.

V bls = 
$$\frac{NL * (\Phi_{csg})^2}{1028.512}$$

$$V$$
bls =  $\frac{20*(7.5)^2}{1028.512}$  = 1.09 bls de agua

En el 4° y 5° días de restauración, el nivel de fluido sigue subiendo, pero a tasas muy pequeñas, lográndose alcanzar un nivel máximo de 25 pies.

La recuperación de nivel es muy baja, por lo que, el pozo no se considera idóneo para bombeo mecánico.

# 5.2 Fórmulas para el cálculo de diseño de Bombeo Mecánico.

La norma estándar para el diseño de Bombeo Mecánico es API RP 11L, para el procedimiento de cálculo se requiere de los siguientes datos:

- Unidad de bombeo
- Longitud de carrera en superficie
- Combinaciones de varillas
- Profundidad de la Bomba
- Diámetro del pistón
- Velocidad de bombeo
- Gravedad específica del fluido
- Tubería de producción

# **5.3** Pasos para calcular: cargas, esfuerzos, potencia, contrabalanceo requerido y torque.

Para una bomba con pistón de 1.25 pulg, de diámetro y una combinación de 5/8" y 3/4" el método API sugiere las siguientes distribución por tamaño de varillas.

Porcentaje 5/8": 37.3% (Ver Tabla 14, columna 10)

Porcentaje 3/4": 62.7% (Ver Tabla 14, columna 9)

Si se requiere una profundidad de la bomba a 2240, ¿cuántos pies de varillas

de 5/8 y 3/4, cada varilla: 25', necesito?

- = (Profundidad de asiento de la bomba \* porcentaje de tamaño de varillas
- = (2240 x 37.3%) = 835 pies de varillas, 33 varillas 3/4''
- = (2240x 62.7%) = 1400 pies de varillas, 56 varillas 5/8"

#### TABLA 14 **DATOS DE BOMBA Y VARILLAS DISEÑO API RPIIL** 5 1 2 3 4 6 7 8 9 10 11 VARILLA DIÁMETRO PESO CONSTANTE **FACTOR** SARTA DE VARILLAS, % POR TAMAÑO Ν° PISTÓN, **VARILLAS** ELÁSTICA **FRECUENCIA** PULG LBS/PIE PULG/LBS-PIE 1'' 3/4" 1 - 1/8" 7/8" 5/8" 1/2" D. (Wr) Er Fc $1,99 \times 10^{-6}$ 0.726 1.000 44 Todos 100.0 $1.668 \times 10^{-6}$ 54 1.06 0.908 1.138 44.6 55.4 54 1.25 0.929 $1.633 \ x10^{-6}$ 1.140 49.5 50.5 $1.584 \ x10^{-6}$ 54 1.50 0.957 1.137 56.4 43.6 $1.525 \ x10^{-6}$ 54 1.75 0.990 1.122 64.6 35.4 $1.460 \ x10^{-6}$ 2.00 1.027 1.095 73.7 26.3 54 1.067 $1.391 \ x10^{-6}$ 1.061 83.4 16.6 54 2.25 $1.318 \ x10^{-6}$ 54 2.50 1.108 1.023 93.5 6.5 $1.270 \times 10^{-6}$ Todos 1.135 1.000 100.0 55 $1.382 \ x10^{-6}$ 33.3 33.5 64 1.06 1.164 1.229 33.1 $1.319 \times 10^{-6}$ 1.25 1.211 1.215 37.2 35.9 26.9 64 $1.232 \ x10^{-6}$ 1.275 42.3 17.3 64 1.50 1.184 40.4 $1.141 \times 10^{-6}$ 1.341 47.4 7.4 64 1.75 1.145 45.2 $1.138 \times 10^{-6}$ 1.06 1.307 1.098 34.4 65.6 65 $1.127 \times 10^{-6}$ 65 1.25 1.321 1.104 37.3 62.7 $1.110 \times 10^{-6}$ 65 1.50 1.343 1.110 41.8 58.2 $1.090 \times 10^{-6}$ 65 1.75 1.369 1.114 46.9 53.1 $1.070 \times 10^{-6}$ 65 2.00 1.394 1.114 52.0 48.0 65 2.25 1.426 $1.045 \times 10^{-6}$ 1.110 58.4 41.6 2.50 1.460 $1.018 \times 10^{-6}$ 1.099 65.2 65 34.8 65 2.75 1.497 $0.990 \times 10^{-6}$ 1.082 72.5 27.5

| TABLA 15  DATOS DE BOMBA Y VARILLAS  DISEÑO API RPIIL |                     |                  |                        |                      |           |    |                 |                 |       |      |  |
|-------------------------------------------------------|---------------------|------------------|------------------------|----------------------|-----------|----|-----------------|-----------------|-------|------|--|
| 1                                                     | 2                   | 3                | 4                      | 5                    | 6         | 7  | 8               | 9               | 10    | 11   |  |
| VARILLA<br>N°                                         | DIÁMETRO<br>PISTÓN, | PESO<br>VARILLAS | CONSTANTE<br>ELÁSTICA  | FACTOR<br>FRECUENCIA |           | S  | ARTA DE VARILLA | AS, % POR TAMAÍ | ŇO    |      |  |
|                                                       | PULG<br>D.          | LBS/PIE<br>(Wr)  | PULG/LBS-PIE           | Fc                   | 1 - 1/8'' | 1" | 7/8''           | 3/4"            | 5/8'' | 1/2" |  |
| 65                                                    | 3.25                | 1.574            | $0.930 \ x10^{-6}$     | 1.037                |           |    |                 | 88.1            | 11.9  |      |  |
| 66                                                    | Todos               | 1.534            | $0.883 \ x 10^{-6}$    | 1.000                |           |    |                 | 100.0           |       |      |  |
| 75                                                    | 1.06                | 1.566            | $0.997 \ x10^{-6}$     | 1.191                |           |    | 27.0            | 27.4            | 45.6  |      |  |
| 75                                                    | 1.25                | 1.604            | $0.973 \ x10^{-6}$     | 1.193                |           |    | 29.4            | 29.8            | 40.8  |      |  |
| 75                                                    | 1.50                | 1.664            | $0.935 \ x10^{-6}$     | 1.189                |           |    | 33.3            | 33.3            | 33.3  |      |  |
| 75                                                    | 1.75                | 1.732            | $0.892 \ x10^{-6}$     | 1.174                |           |    | 37.8            | 37.0            | 25.1  |      |  |
| 75                                                    | 2.00                | 1.803            | $0.847 \ x10^{-6}$     | 1.151                |           |    | 42.4            | 41.3            | 16.3  |      |  |
| 75                                                    | 2.25                | 1.875            | $0.801 \ x10^{-6}$     | 1.121                |           |    | 46.9            | 45.8            | 7.2   |      |  |
| 76                                                    | 1.06                | 1.802            | $0.816 \ x10^{-6}$     | 1.072                |           |    | 28.5            | 71.5            |       |      |  |
| 76                                                    | 1.25                | 1.814            | $0.812 \ x10^{-6}$     | 1.077                |           |    | 30.6            | 69.4            |       |      |  |
| 76                                                    | 1.50                | 1.833            | $0.804 \ x10^{-6}$     | 1.082                |           |    | 33.8            | 66.2            |       |      |  |
| 76                                                    | 1.75                | 1.855            | $0.795 \ x10^{-6}$     | 1.088                |           |    | 37.5            | 62.5            |       |      |  |
| 76                                                    | 2.00                | 1.880            | $0.785 \ x10^{-6}$     | 1.093                |           |    | 41.7            | 58.3            |       |      |  |
| 76                                                    | 2.25                | 1.903            | $0.774 \ x10^{-6}$     | 1.096                |           |    | 46.5            | 53.5            |       |      |  |
| 76                                                    | 2.50                | 1.934            | $0.764 \ x10^{-6}$     | 1.097                |           |    | 50.8            | 49.2            |       |      |  |
| 76                                                    | 2.75                | 1.967            | $0.751 \ x10^{-6}$     | 1.094                |           |    | 56.5            | 43.5            |       |      |  |
| 76                                                    | 3.75                | 2.039            | $0.722 \ x10^{-6}$     | 1.078                |           |    | 68.7            | 31.3            |       |      |  |
| 76                                                    | 3.75                | 2.119            | $0.690 \ x10^{-6}$     | 1.047                |           |    | 82.3            | 17.7            |       |      |  |
| 77                                                    | Todos               | 2.224            | $0.649 \times 10^{-6}$ | 1.000                |           |    | 100.0           |                 |       |      |  |

- Peso total de varillas en el aire, Wr (Lbs).

$$W = H \times Wr$$

H= Profundidad de asiento de la bomba (pies).

W = Peso total de varillas en el aire, (Lbs)

Wr = ver tabla 14 columna 3

- Peso total de varillas en flotación, Wrf (Lbs).

$$Wrf = W((1-0.128)(G))$$

G = Gravedad específica del fluido, adimensional.

- La carga del fluido sobre la bomba (Fo), depende de la gravedad específica del fluido (G), la profundidad de asentamiento (H), y el diámetro del pistón.

Fo = 
$$0.340 \times G \times D^2 \times H$$

- El cálculo del **estiramiento de varillas (Fo/ Skr**), es una de las relaciones claves para determinar una carta dinagráfica parecida. La constante elástica de la sarta de varillas (Er) se obtiene de la tabla 12 columna 4, S; Longitud de carrera en superficie (pulgs).

$$Er = 1127x10^{-6} \text{ pulgs/ Lbs-pie}$$

Las propiedades de estiramiento total de la sarta de varillas, están relacionadas con su constante Kr, cuyo recíproco es (1/Kr) = Er x L

- Carrera del pistón

$$SP = S x - (Fo/SKr)$$

- La otra relación importante es la velocidad de bombeo adimensional (  $N/N_0$  ). Este factor es el cociente entre la velocidad de bombeo y la

frecuencia natural de las varillas, la cual, indica la sarta de varillas sin fricción, si estuviera fija en el tope y libre en el fondo.

# - Frecuencia Natural

$$N_o$$
 = (245000/H) x Fc (ciclos/minutos)

Fc = Factor frecuencia (Ver Tabla N° 14 columna 5)

Fc > 1 (cuando se utiliza una combinación de diámetros de varillas)

En caso de utilizar varillas de un solo diámetro, la velocidad de bombeo adimensional sería: NB( Velocidad de bombeo).

$$\frac{N}{N'o} = \frac{NB x H}{245000}$$

En caso de utilizar varillas combinadas, la velocidad de bombeo adimensional sería:

$$\frac{N}{N'o} = \frac{NB x H}{245000 x Fc}$$

En la Fig. 23 se muestra una gráfica que permite obtener una relación adimensional (F1/SKr), para calcular la carga máxima en la barra pulida, utilizando los factores adimensionales base conocida: ( $N/N_o$ ), y Fo/SKr.

# Gráfica para calcular la carga máxima en la barra pulida

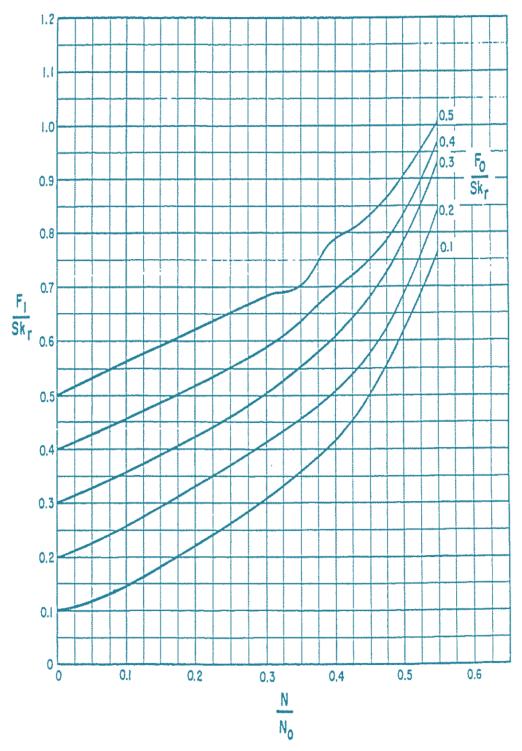



Fig. 23 Relación Adimensional (F1/SKr)

Para el calcular la cara miníma en la barra pulida (F2/SKr) utilizar la Fig. 24, utilizando los mismo factores base.

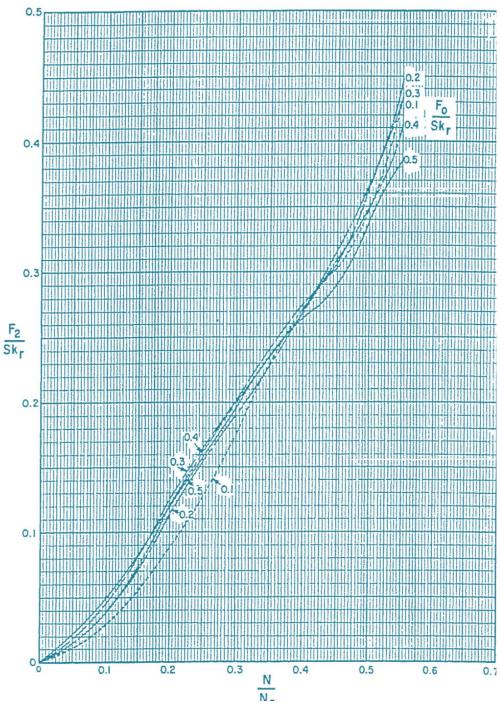



Fig. 24 Relación Adimensional (F2/SKr).

El torque máximo en la carga de engranaje, es otro parámetro importante en la selección de la unidad de bombeo. La Fig. 25, muestra una gráfica para calcular una relación adimensional de torque (2T/S² Kr) usando los valores, también adimensionales, de velocidad y estiramiento de varillas, mencionados en los pasos anteriores.

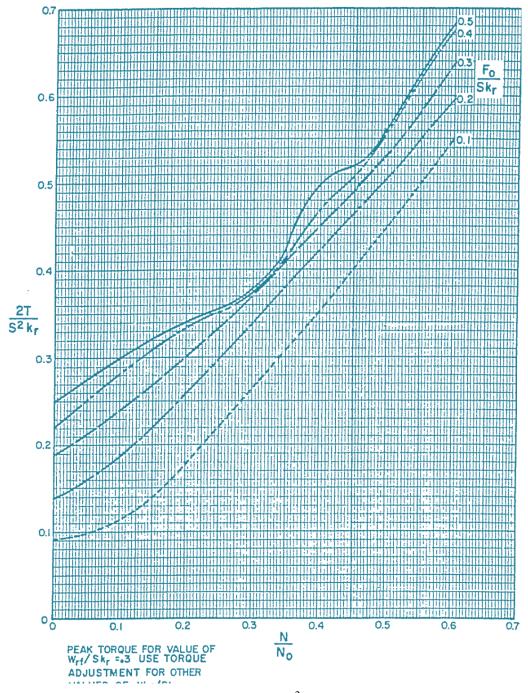



Fig. 25 Relación Adimensional (2T/S² Kr)

Si el fluido del pozo bajo análisis es diferente a está relación (Wrf/SKr), es necesario hacer una corrección de torque, debido a que (Wrf/SKr) ≠0.3 y se utiliza la Fig. 26

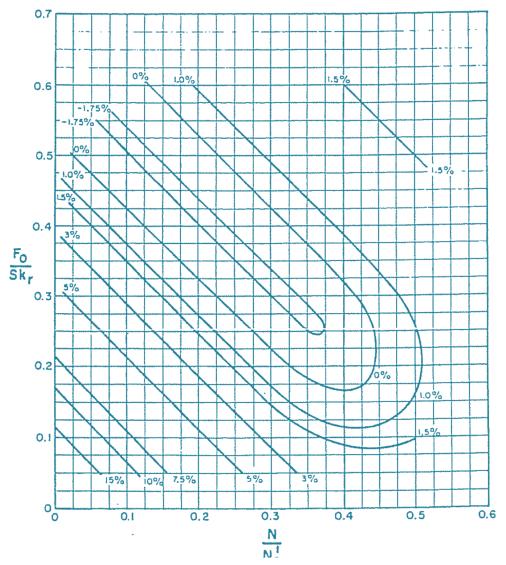



Fig. 26. Valor de ajuste (Ta) para corregir torque máximo (para  $Wr/SKr \neq 0.3$ )

Fuente: Kermit E. Brown

# Entonces el valor de ajuste (Ta) calculado es:

$$Ta = 1 + v \text{ tabla } \left(\frac{Wrf}{SKr} - 0.3}{0.1}\right)$$

# Torque máximo corregido es, PT

$$PT = (Ta)(T)$$

La cantidad de peso necesario para el **contrabalance de la unidad de bombeo**, también debe ser considerado en el diseño. El API , utilizan la siguiente ecuación para determinar el contrabalanceo efectivo (CBE);

$$CBE = 1.06(Wrf + 0.5F)$$

La potencia requerida para mover la carga en la barra pulida (PRHP) La relación adimensional (F<sub>3.</sub>/Skr) se obtiene de la Fig. 27 a través de la siguiente ecuación.

$$PRHP = (F_{3.}/Skr) \times Skr \times S \times N \times 2.53 \times 10^{-6}$$

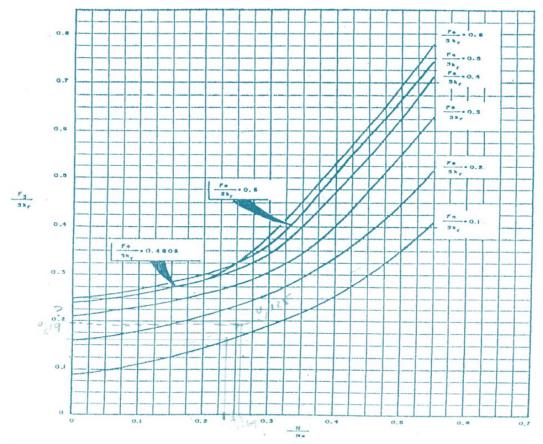



Fig. 27 Relación Adimensional (F<sub>3.</sub>/Skr), para calcular la potencia del motor.

La carrera del pistón de la bomba de subsuelo, gobierna la tasa de producción, conjuntamente con la velocidad de bombeo, el tamaño de la bomba y la capacidad misma de producción del pozo. La relación (SP/S), se obtiene de la Fig. 28

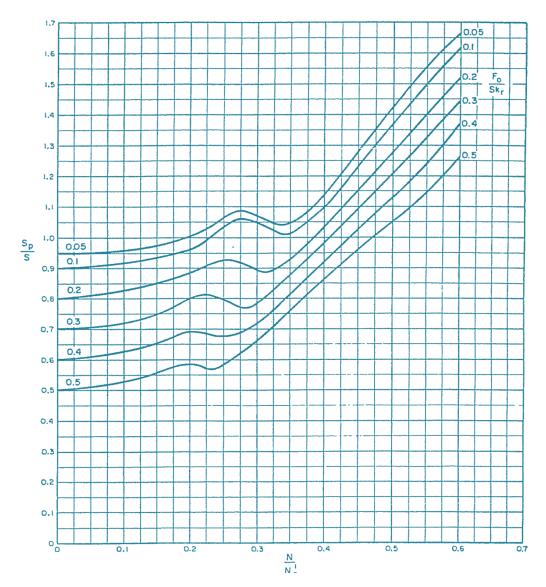



Fig. 28 Relación Adimensional (Sp/S). Gráfica para calcular la carrera efectiva del pistón

Fuente: Kermit E. Brown

El desplazamiento de la bomba es calculada por la siguiente ecuación:

N: Velocidad de la bomba

$$P = 0.1166 (Dp)^2 x Cp x N$$

# 5.4 Simulación e interpretación en Sotfware QRod.

El diseño de Bombeo Mecánico puede ser interpretada mediante una simulación rápida y precisa utilizando el Software QRod; ingresando los parámetros: tipo del balancín, profundidad de la bomba, carrera del balancín, diámetro del pistón y otros parámetros necesarios, podemos tener como resultados: eficiencia de la bomba, porcentaje de varillas, carga de varillas ,capacidad mínima de potencia del motor, y potencia de la barra pulida. (Ver Figs. 29 y 30)



Fig. 29 Software QRod Fuente: Pacifpetrol

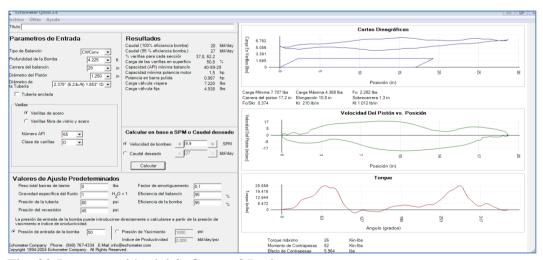



Fig. 30 Interpretación del Software QRod

Fuente: Pacifpetrol

# 5.5 Implementación del proyecto.

De los análisis técnicos se pudo identificar 22 pozos idóneos para aplicar Bombeo Mecánico (tabla N° 16).

|         |         |         |              |        | POZ       | OS SELE | CCIONAD   | OS PARA (   | CAMBIO DE SISTEMA       |        |            |        |         |              |
|---------|---------|---------|--------------|--------|-----------|---------|-----------|-------------|-------------------------|--------|------------|--------|---------|--------------|
| 0070    | A CODIO | 70114   | FORMACIÓN    | MÉTODO | DOTENCIAL | CICLO   | RESTAURAC | CIÓN maxima | FT NIVEL max (INSTA-NL) | Tubing | CSG        | Coord  | enadas  | MES          |
| POZO.   | ACOPIO  | ZONA    | FORMACION    | METODO | POTENCIAL | CICLO   | BLSo      | BLSw        | ft                      | in     | in         | Х      | Υ       | RESTAURACIÓN |
| ANC0655 | 66      | Central | PB/ATLANTA   | SW     | 4         | 4       | 7         | 0           | 100                     | 23/8   | 8,625      | 519757 | 9743643 | Mayo         |
| ANC1256 | 67      | Central | SANTO TOMAS  | SW     | 3         | 3       | 5,1       | 0           | 145                     | 23/8   | 6          | 523121 | 9743217 | Mayo         |
| ANC1552 | Tigre   | Central | CPB/PB/AT    | SW     | 6         | 3       | 6,6       | 0           | 270                     | 23/8   | 5          | 521495 | 9747023 | Mayo         |
| ANC0084 | 74      | Central | ATLANTA      | SW     | 3         | 7       | 3,7       | 0           | 80                      | 23/8   | 6-8,625    | 517139 | 9742400 | Junio        |
| ANC0120 | 74      | Central | ATLANTA      | SW     | 4         | 4       | 9,6       | 0           | 230                     | 23/8   | 5,75-8,625 | 517529 | 9742749 | Junio        |
| ANC0153 | 74      | Central | PB/ATLANTA   | SW     | 4         | 5       | 3,3       | 0           | 102                     | 23/8   | 8,625      | 517618 | 9741717 | Junio        |
| ANC0171 | 74      | Central | PB/ATLANTA   | SW     | 8         | 8       | 6,5       | 0,4         | 95                      | 23/8   | 8,625      | 518197 | 9742410 | Julio        |
| ANC0175 | 74      | Central | PB/ATLANTA   | SW     | 4,5       | 5       | 3,6       | 0           | 50                      | 23/8   | 8,625      | 518260 | 9742202 | Julio        |
| ANC1273 | 67      | Central | ST/ATLANTA   | SW     | 4         | 5       | 3         | 0           | 100                     | 23/8   | 5,5        | 522307 | 9743603 | Julio        |
| ANC1555 | Tigre   | Central | SO/CPB/PB    | SW     | 3         | 4       | 2,2       | 0           | 90                      | 23/8   | 5          | 521339 | 9747390 | Julio        |
| ANC1836 | 67      | Central | SO/CPB       | SW     | 3         | 5       | 4,9       | 0,7         | 230                     | 23/8   | 5          | 520778 | 9744082 | Julio        |
| ANC1266 | 67      | Central | ST/PB/AT     | SW     | 3         | 3       | 5,9       | 0           | 200                     | 23/8   | 5,5        | 522705 | 9743844 | Agosto       |
| ANC1295 | 67      | Central | ST/PB/AT     | SW     | 5         | 2       | 4,4       | 1,7         | 209                     | 27/8   | 5,5        | 523145 | 9744633 | Septiembre   |
| ANC1288 | 67      | Central | CPB/ST/PB/AT | SW     | 6         | 8       | 8,8       | 0           | 300                     | 23/8   | 5,5        | 521499 | 9743909 | Septiembre   |
| ANC0173 | 74      | Central | PB/ATLANTA   | SW     | 8         | 4       | 5,2       | 0           | 160                     | 23/8   | 5,758      | 517883 | 9742289 | Octubre      |
| TIG0048 | Tigre   | Central | CPB/PB/AT    | SW     | 3         | 2       | 3,3       | 0           | 45                      | 23/8   | 8,625      | 522242 | 9746283 | Octubre      |
| ANC0796 | Tigre   | Central | CPB/ST/AT    | SW     | 9         | 4       | 7,1       | 3,8         | 230                     | 23/8   | 7          | 521069 | 9747258 | Octubre      |
| TIG0030 | Tigre   | Central | SO/CPB/PB/AT | SW     | 5         | 4       | 1,7       | 9,6         | 265                     | 23/8   | 6,625      | 522378 | 9746241 | Octubre      |
| ANC0558 | 67      | Central | ST/PB/AT     | SW     | 10        | 4       | 7,1       | 10,9        | 380                     | 23/8   | 7          | 521591 | 9745320 | Diciembre    |
| ANC1276 | 67      | Central | ST/ATLANTA   | SW     | 3         | 4       | 9,6       | 0           | 75                      | 23/8   | 11,5       | 521178 | 9743279 | Diciembre    |
| TIG0012 | Tigre   | Central | PB/ATLANTA   | SW     | 3         | 2       | 7,6       | 0,7         | 115                     | 23/8   | 8,625      | 521631 | 9745930 | Diciembre    |
| TIG0025 | Tigre   | Central | PB/ATLANTA   | SW     | 4         | 2       | 9.6       | 0           | 225                     | 23/8   | 6.625      | 522297 | 9746033 | Diciembre    |

Tabla N° 16 Tabla de resultados de pozos seleccionados para cambio de sistema.

Elaborado por: Jenny Guale

# 5.6 Mapas de ubicación de los pozos seleccionados

Como se puede ver en los siguientes mapas, se seleccionó 1 pozo de la sección 66, 8 pozos de la sección 67 y 6 pozos de la sección 74 y, 7 pozos de la sección Tigre.



Fig. 31 Mapa sección 66

Elaborado por: Jenny Guale R. /Geographix.

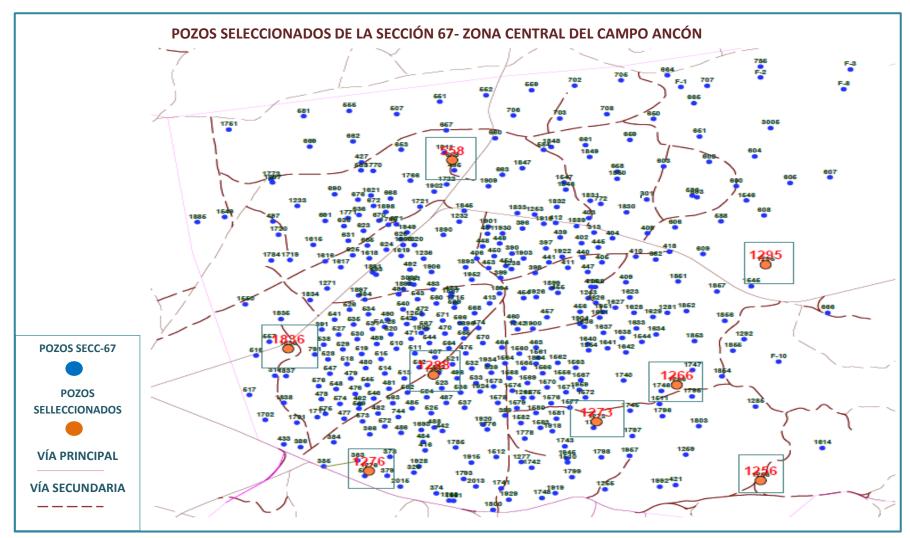



Fig. 32 Mapa sección 67

Elaborado por: Jenny Guale R. /Geographix.



Fig. 33 Mapa sección 74 Elaborado por: Jenny Guale R. /Geographix.

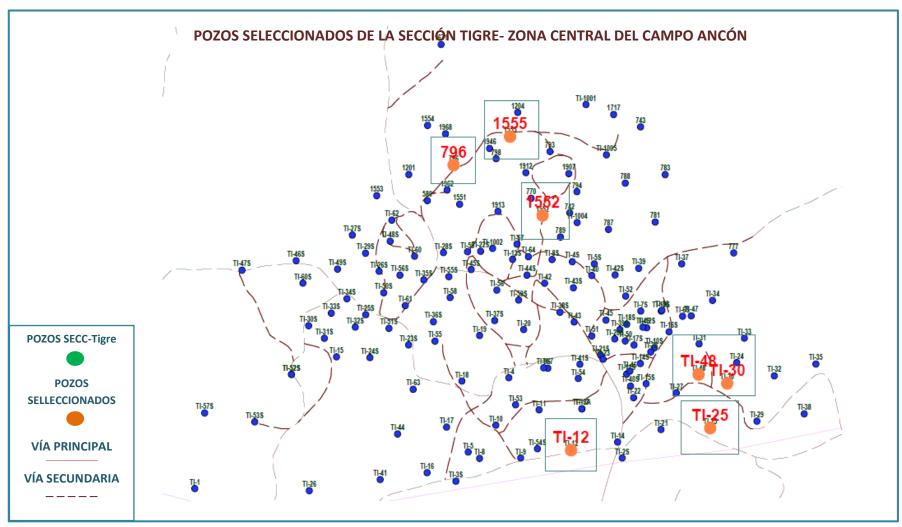



Fig. 34 Mapa sección Tigre

Elaborado por: Jenny Guale R. /Geographix

# 5.7 Plan de implementación del proyecto.

La implementación del proyecto tomará 6 etapas, de 1mes cada una; cada etapa comprende las instalaciones de superficie y subsuelo para bombeo mecánico en un grupo de pozos y la puesta en marcha de 1 balancín y 1 carreta de recolección. Como se dijo anteriormente, se ha logrado seleccionar 22 pozos que alcanzarían para las 4 primeras etapas, faltarían 14 pozos más que se incluirían en 2 etapas finales. En la Tabla N° 17 se muestra los pozos seleccionados y en cuál etapa del proyecto entrarían.

| D0706         | DDOE NU Elvido |         | BALA    | NCINES  |         |
|---------------|----------------|---------|---------|---------|---------|
| POZOS         | PROF NL Fluido | ETAPA 1 | ETAPA 2 | ЕТАРА 3 | ETAPA 4 |
| SECCIÓN 66    |                |         |         |         |         |
| ANC0655       | 2240           |         |         | 3       |         |
| SECCIÓN 67    |                |         |         |         |         |
| ANC1256       | 2563,8         | 1       |         |         |         |
| ANC1273       | 2921           | 1       |         |         |         |
| ANC1836       | 1196,5         |         |         | 3       |         |
| ANC1266       | 3775           | 1       |         |         |         |
| ANC1295       | 3117,7         | 1       |         |         |         |
| ANC1288       | 3683,8         | 1       |         |         |         |
| ANC0558       | 3915           |         |         | 3       |         |
| ANC1276       | 2335           |         |         | 3       |         |
| SECCIÓN 74    |                |         |         |         |         |
| ANC0084       | 1770,11        |         | 2       |         |         |
| ANC0120       | 1889,9         |         | 2       |         |         |
| ANC0153       | 2360           |         | 2       |         |         |
| ANC0171       | 2218,6         |         | 2       |         |         |
| ANC0175       | 2372,1         |         | 2       |         |         |
| ANC0173       | 2953,8         |         | 2       |         |         |
| SECCIÓN TIGRE |                |         |         |         |         |
| ANC0796       | 3890,6         |         |         |         | 4       |
| ANC1552       | 1600,7         |         |         |         | 4       |
| ANC1555       | 1546,8         |         |         |         | 4       |
| TIG0012       | 3236,1         |         |         | 3       |         |
| TIG0025       | 2502,9         |         |         |         | 4       |
| TIG0030       | 2146,3         |         |         |         | 4       |
| TIG0048       | 2904,8         |         |         |         | 4       |

Tabla N° 17. Cronograma para ejecución del proyecto.

Elaborado por: Jenny Guale.

# 5.7.1 Mapa para el plan de implementación del proyecto en etapas.

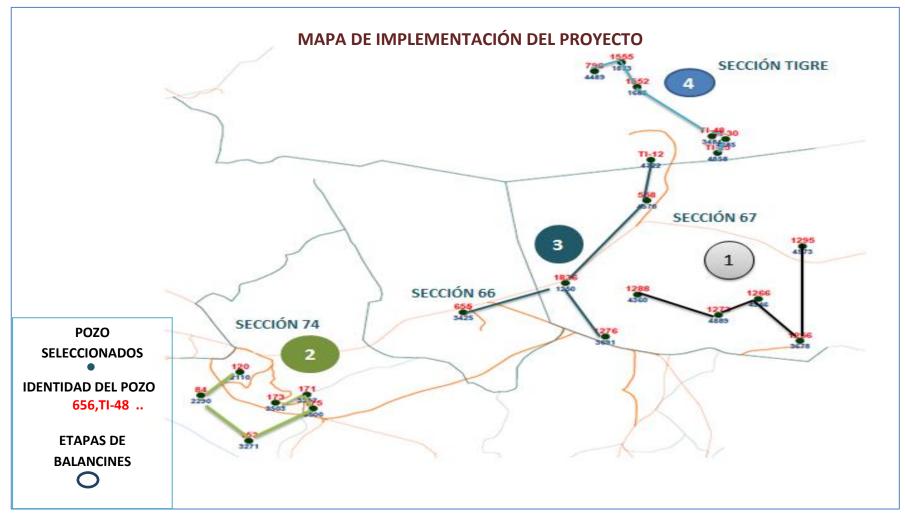



Fig. 35 Mapa de implementación del proyecto.

Elaborado por: Jenny Guale R. /Geographix.

**Etapa 1.-** Primer balancín portátil a trabajar con 5 pozos de la sección 67 con rangos de profundidad de 2500 a 3700°.

**Etapa 2.** Segundo balancín portátil a trabajar con 6 pozos de la sección 74 con rangos de profundidad de 1700 a 2900'.

**Etapa 3.** Tercer balancín portátil a trabajar con 1 pozo de la sección 66, 3 pozos de la sección 67 y 1 de la sección Tigre con rangos de profundidad de 1200 a 3800'.

**Etapa 4.** Cuarto balancín portátil a trabajar con 6 pozos de la sección Tigre con rangos de profundidad de 1600 a 3900'.

# CAPÍTULO VI ANÁLISIS ECONÓMICO.

## 6.1 Procedimiento para Análisis Económico.

En el presente estudio hay que recalcar que el proyecto para Optimización de Sistemas de Extracción no es productivo ni de desarrollo. El objetivo del proyecto es generar una corriente futura de ahorros, y no, precisamente, de ingresos.

Partiendo de esa premisa, para realizar una evaluación económica efectiva, se requiere plantear dos escenarios:

El escenario 1, que mostraría el desempeño económico de la compañía hacia un tiempo futuro sin implementar el proyecto, es decir, si las actividades continuaran tal como están, sin realizar inversiones ni cambios.

El escenario 2, que mostraría el desempeño económico de la compañía hacia un tiempo futuro si se realizaran todas las inversiones requeridas para llevar a cabo al proyecto, con los consiguientes ahorros en gastos operativos por Swab e incrementos en gastos operativos por Bombeo Mecánico.

El objetivo final del análisis económico sería generar dos flujos de caja, uno sin implementar el proyecto y otro implementando el proyecto, para compararlos y determinar si se da un beneficio económico y en qué tiempo.

En la Fig. 36 se muestra de forma esquematizada el procedimiento utilizado para evaluar la Factibilidad Económica del Proyecto.

#### FLUJOGRAMA DE EVALUACIÓN ECONÓMICA DEL PROYECTO. - BASE DE DATOS PRODUCCIÓN PACIFPETROL INFORMACIÓN FINANCIERA PACIFPETROL (PROFIT) DETALLES DE CONSUMO DE BODEGA PACIFPETROL (BAAN). PRECIOS ACTUALIZADOS PROPORCIONADOS POR BODEGA PACIF. ORIGEN DE - INFORMACIÓN YACIMIENTOS PACIFPETROL DETALLES DE CONSUMO DE BODEGA PACIFPETROL (B - COSTOS PROPORCIONADOS POR ÁREA MANTENIMIENTO PACIF. DATOS - INFORMACIÓN FINANCIERA PACIFPETROL PRECIOS PROPORCIONADOS POR PROVEEDORES EXTERNOS. - PRODUCCIÓN SUELDOS, BENEFICIOS, SEGURIDAD SOCIAL Y HORAS. - CONSUMO DE MATERIALES Y REPUESTOS PARA OPERACIÓN - COSTOS DE BALANCINES PORTÁTILES. - TASA DE DECLINACIÓN EXTRAS PARA OPERACIÓN. CONSUMO DE COMBUSTIBLES PARA OPERACIÓN. - COSTOS DE CARRETAS DE RECOLECCIÓN. - PRECIO POR BARRIL PARA LA VENTA CONSUMO DE MATERIALES Y REPUESTOS PARA OPERACIÓN CONSUMO DE MATERIALES Y REPUESTOS PARA MANTENIMIENTO. - COSTOS DE PUENTES DE PRODUCCIÓN. DATOS CONSUMO DE COMBUSTIBLES PARA OPERACIÓN. COSTO DE MANO DE OBRA PARA MANTENIMIENTO. - COSTOS DE STUFFING BOXES, GRAMPAS Y VARILLONES. RECOLECTADOS CONSUMO DE MATERIALES Y REPUESTOS PARA MANTENIMIENTO. CONSUMO DE GRASAS Y LUBRICANTES. COSTOS DE VARILLAS, NEPLOS, BOMBAS Y NIPLES DE ASIENTO. COSTO DE MANO DE OBRA PARA MANTENIMIENTO. CONSUMO DE GRASAS Y LUBRICANTES. **RUBRO FINAL** PRONÓSTICO DE GASTOS GENERADOS POR IMPLEMENTACIÓN DE EN FLUJO DE PRONÓSTICO DE INGRESOS PRONÓSITICO DE GASTOS GENERADOS POR UNIDAD DE SWAB PRONÓSTICO DE INVERSIÓN. BOMBEO MECÁNICO CAJA ESCENARIO 1: FLUJO DE CAJA ESCENARIO 2: FLUJO DE CAJA SIN IMPLEMENTAR EL IMPLEMENTANDO EL PROYECTO. PROYECTO. DETERMINACIÓN DE BENEFICIO ECONÓMICO.

Fig. 36 Flujograma de evaluación económica del proyecto.

# 6.2 Pronóstico de Ingresos.

El pronóstico de ingresos se hizo asumiendo que la producción inicial de los pozos que entrarían en el proyecto es de 50 BPPD o 1500 BPP/mes. A esta producción se le aplicó una tasa de declinación de 0.25% mensual (declinación normal del campo) y se la proyectó a 48 meses. Por último, se multiplicó la proyección mensual en barriles estimada en 60 dólares que el Estado le paga a la Empresa por cada barril producido; así, se obtuvo el ingreso mensual respectivo. (Ver Tabla N° 18).

|         | PRODUCCIÓN     | PRODUCCIÓN     |           |
|---------|----------------|----------------|-----------|
|         | DIARIA BPD     | MENSUAL BPD    |           |
| PERÍODO | (Declinación   | (Declinación   | INGRESOS  |
|         | 0,25% mensual) | 0,25% mensual) |           |
| 1       | 50             | 1.500,00       | 00,000,00 |
|         |                | · ·            | 90.000,00 |
| 2       | 49,88          | 1.496,25       | 89.775,00 |
| 3<br>4  | 49,75          | 1.492,51       | 89.550,56 |
|         | 49,63          | 1.488,78       | 89.326,69 |
| 5       | 49,50          | 1.485,06       | 89.103,37 |
| 6       | 49,38          | 1.481,34       | 88.880,61 |
| 7       | 49,25          | 1.477,64       | 88.658,41 |
| 8       | 49,13          | 1.473,95       | 88.436,76 |
| 9       | 49,01          | 1.470,26       | 88.215,67 |
| 10      | 48,89          | 1.466,59       | 87.995,13 |
| 11      | 48,76          | 1.462,92       | 87.775,14 |
| 12      | 48,64          | 1.459,26       | 87.555,71 |
| 13      | 48,52          | 1.455,61       | 87.336,82 |
| 14      | 48,40          | 1.451,97       | 87.118,48 |
| 15      | 48,28          | 1.448,34       | 86.900,68 |
| 16      | 48,16          | 1.444,72       | 86.683,43 |
| 17      | 48,04          | 1.441,11       | 86.466,72 |
| 18      | 47,92          | 1.437,51       | 86.250,55 |
| 19      | 47,80          | 1.433,92       | 86.034,93 |
| 20      | 47,68          | 1.430,33       | 85.819,84 |
| 21      | 47,56          | 1.426,75       | 85.605,29 |
| 22      | 47,44          | 1.423,19       | 85.391,28 |
| 23      | 47,32          | 1.419,63       | 85.177,80 |
| 24      | 47,20          | 1.416,08       | 84.964,85 |
| 25      | 47,08          | 1.412,54       | 84.752,44 |
| 26      | 46,97          | 1.409,01       | 84.540,56 |
| 27      | 46,85          | 1.405,49       | 84.329,21 |
| 28      | 46,73          | 1.401,97       | 84.118,39 |
| 29      | 46,62          | 1.398,47       | 83.908,09 |
| 30      | 46,50          | 1.394,97       | 83.698,32 |
| 31      | 46,38          | 1.391,48       | 83.489,07 |
| 32      | 46,27          | 1.388,01       | 83.280,35 |
| 33      | 46,15          | 1.384,54       | 83.072,15 |
| 34      | 46,04          | 1.381,07       | 82.864,47 |
| 35      | 45,92          | 1.377,62       | 82.657,31 |
| 36      | 45,81          | 1.374,18       | 82.450,66 |
| 37      | 45,69          | 1.370,74       | 82.244,54 |
| 38      | 45,58          | 1.367,32       | 82.038,93 |
| 39      | 45,46          | 1.363,90       | 81.833,83 |
| 40      | 45,35          | 1.360,49       | 81.629,24 |
| 41      | 45,24          | 1.357,09       | 81.425,17 |
| 42      | 45,12          | 1.353,69       | 81.221,61 |
| 43      | 45,01          | 1.350,31       | 81.018,55 |
| 44      | 44,90          | 1.346,93       | 80.816,01 |
| 45      | 44,79          | 1.343,57       | 80.613,97 |
| 46      | 44,67          | 1.340,21       | 80.412,43 |
| 47      | 44,56          | 1.336,86       | 80.211,40 |
| 48      | 44,45          | 1.333,51       | 80.010,87 |
|         |                |                |           |

Tabla N° 18 Pronóstico de Ingresos. Elaborado por: Guale Ricardo Jenny.

### 6.3 Pronóstico de Inversiones.

Se considera inversión a todos aquellos desembolsos necesarios para crear la infraestructura.

En la Tabla N°19 se muestra el listado general de inversiones en equipos y materiales de superficie y subsuelo para la instalación de Bombeo Mecánico en 36 pozos de SW.

Tabla 19. Listado De Inversiones Proyecto: "Ahorro Operativo"

Área: Zona Central del Campo Ancón

Proyecto: Cambio de sistema Swab a Bombeo Mecánico.

**Pozos**: Inversión para 36 pozos.

COSTO DE INVERSIÓN DEL PROYECTO

| COOT O DE INVERSION DEL T | KOTECTO | 037 040,43 |          |           |                            |  |  |  |
|---------------------------|---------|------------|----------|-----------|----------------------------|--|--|--|
|                           |         |            |          |           |                            |  |  |  |
| DESCRIPCIÓN               | UNIDAD  | PRECIO     | CANTIDAD | PRECIO    | FUENTE DE                  |  |  |  |
| DESCRIPCION               | UNIDAD  | UNITARIO   | CANTIDAD | TOTAL     | INFORMACIÓN                |  |  |  |
|                           |         |            |          |           |                            |  |  |  |
| Balancin portatil         | und     | 23000      | 6        | 138000,00 | Mantenimiento              |  |  |  |
| Carreta de almacenamiento | und     | 10000      | 6        | 60000,00  | Mantenimiento              |  |  |  |
| Puente de producción      | und     | 700,35     | 36       | 25.212,69 | Mantenimiento              |  |  |  |
| Stuffing box              | und     | 600        | 36       | 21600,00  | Consulta de stok de bodega |  |  |  |
| Grampa                    | und     | 500        | 36       | 18.000,00 | Consulta de stok de bodega |  |  |  |
|                           |         |            |          |           |                            |  |  |  |
|                           |         |            |          |           | \$ 262.812,69              |  |  |  |

637648 43

| DESCRIPCIÓN                                    | UNIDAD | PRECIO<br>UNITARIO | CANTIDAD  | PRECIO<br>TOTAL | FUENTE DE<br>INFORMACIÓN   |
|------------------------------------------------|--------|--------------------|-----------|-----------------|----------------------------|
|                                                | EQ     | UIPO DE F          | ONDO      |                 |                            |
| Asiento 2 3/8", 8RD, EUE, bomba de subsu       | und    | 121,67             | 36        | 4.380,12        | Consulta de stok de bodega |
| Tub perforado + tapón 2 3/8" x 8H              | und    | 98,72              | 36        | 3.553,92        | Consulta de stok de bodega |
| bomba de 8                                     | und    | 2032,4             | 36        | 73166,04        | Consulta de stok de bodega |
| varillas de subsuelo 5/8"x25' A/C              | ft     | 3                  | 61763,280 | 185.289,84      | Consulta de stok de bodega |
| varillas de subsuelo 3/4"x25' A/C              | ft     | 3,2                | 30420,72  | 97.346,30       | Consulta de stok de bodega |
| neplo de varillas; 3/4"x10' Lng. ;acero al car | und    | 115,72             | 36        | 4.165,92        | Consulta de stok de bodega |
| varillón pulido 1 1/4" x 3/4x                  | und    | 192,6              | 36        | 6.933,60        | Consulta de stok de bodega |
|                                                |        |                    |           |                 | \$ 374.835.74              |

Tabla N°19 Listado de Inversión. Elaborado por: Guale Ricardo Jenny.

**Nota:** La inversión total del proyecto será de \$637648.43 repartida en 6 etapas de \$106274.74 cada una.

#### 6.4 Pronóstico de Gastos por SW.

Se considera gastos aquellos desembolsos necesarios para operar y mantener en funcionamiento la infraestructura productiva creada por la inversión. Inversamente a lo que ocurre con ésta, los gastos se componen de bienes y servicios que se consumen en forma inmediata. Pero financieramente, ambos son desembolsos y juegan el mismo rol, en la ecuación de flujo de caja.

En la tabla 20 se muestra el detalle de gastos mensuales generados por todas las unidades de SW en promedio para el año 2012.

| DESCRIPCIÓN                   | MONTO<br>MENSUAL | FUENTE DE<br>INFORMACIÓN    |
|-------------------------------|------------------|-----------------------------|
| OPERACIÓN Y PRODUCCION SWAB   | WILINGOAL        | INTORVIACION                |
| Aportes a la seguridad social | 63.53,21         | Inf. Financiera Pacifpetrol |
| Beneficios sociales e indem.  | 11.592,64        | Inf. Financiera Pacifpetrol |
| Combustible                   | 15.739,63        | Detalle de consumo- BAAN    |
| Consumo de Repuestos          | 16.840,19        | Detalle de consumo- BAAN    |
| Horas Extras                  | 10.168,98        | Inf. Financiera Pacifpetrol |
| Sueldos y salarios            | 20.814,49        | Inf. Financiera Pacifpetrol |
| Alimentacion                  | 160,36           | Inf. Financiera Pacifpetrol |
| Capacitacion Personal         | 2.175,73         | Inf. Financiera Pacifpetrol |
| MANTENIMIENTO                 |                  |                             |
| Equipos pesados               | 15.323,31        | Detalle de consumo- BAAN    |
| Grasas y lubricantes          | 1.516,22         | Detalle de consumo- BAAN    |
| Alquiler de la unidad         | 8.516,93         |                             |
| GASTOS DE OPERACIÓN DE SWAB.  | 109.201,68       |                             |

Tabla N° 20 Gastos mensuales de Swab (promedio 2012).

Elaborado por: Jenny Guale

Los gastos totales de operación por Swab son \$109 201,68 para 4 unidades. Tomando en cuenta que uno de los objetivos del proyecto es eliminar 1 unidad de SW, se calcula el costo por unidad dividiendo los \$109201,68 para 4. El costo por unidad es entonces de \$ 27300,42.

La fuente de información de los consumos de materiales, combustibles, grasas lubricantes y repuestos, etc, del proceso de operaciones de cada sección del campo, fue el programa GSP, en el que se carga diariamente toda la información

opertativa, financiera, logística, administrativa y ambiental del campo. (Ver Figs 37 y 38).



Fig. 37. Programa GSP Fuente: Pacifpetrol



Fig. 38. Detalle de consumo del GSP.

Fuente: Pacifpetrol

#### 6.5 Pronóstico de Gastos por BM.

En base a detalles de consumo de bodega del año 2012 se estimó los gastos mensuales por Bombeo Mecánico para el total de 272 pozos del campo.

| DESCRIPCIÓN                        | MONTO     | FUENTE DE                |
|------------------------------------|-----------|--------------------------|
| DESCRIPCION                        | MENSUAL   | INFORMACIÓN              |
| EXTRACCION Y PRODUCCIÓN BM         |           |                          |
| Combustible                        | 1.913,71  | Detalle de consumo –BAAN |
| Consumo de Repuestos               | 4.796,93  | Detalle de consumo –BAAN |
| MANTENIMIENTO.                     |           |                          |
| Consumo de Repuestos               | 20.563,17 | Detalle de consumo- BAAN |
| Grasas y lubricantes               | 3.419,10  | Detalle de consumo- BAAN |
| Mantenimiento y Reparaciones       | 6.799,68  | Detalle de consumo- BAAN |
| Mantenimiento Equipo y<br>Talleres | 1.108,78  |                          |
| COSTO DIRECTO (PARA 272 POZOS)     | 38.601,37 |                          |

Tabla N° 21 Planilla de gastos de BM del año 2012

Fuente: Pacifpetrol.

En la Tabla 21 se puede observar que los gastos operativos totales de 272 pozos de Bombeo Mecánico son de \$ 38601,37. Esto quiere decir que el gasto mensual operativo por pozo es de \$141,92.

Si la implementación del proyecto se hiciera en 6 etapas de 6 pozos cada una, el pronóstico de gastos por Bombeo Mecánico sería según detalla la tabla 22.

| GASTOS OPERATIVOS POR IMPLEMENTACIÓN DE BM       |          |  |  |  |  |  |  |  |
|--------------------------------------------------|----------|--|--|--|--|--|--|--|
| ETAPA 1 (6 POZOS IMPLEMENTADOS).                 | 851.50   |  |  |  |  |  |  |  |
| ETAPA 2 (12 POZOS IMPLEMENTADOS).                | 1.703,00 |  |  |  |  |  |  |  |
| ETAPA 3 (18 POZOS IMPLEMENTADOS).                | 2.554,50 |  |  |  |  |  |  |  |
| ETAPA 4 (24 POZOS IMPLEMENTADOS).                | 3.406,00 |  |  |  |  |  |  |  |
| ETAPA 5 (30 POZOS IMPLEMENTADOS).                | 4.257,50 |  |  |  |  |  |  |  |
| ETAPA 6 HACIA ADELANTE (36 POZOS IMPLEMENTADOS). | 5.109,00 |  |  |  |  |  |  |  |

Tabla N° 22 Pronóstico de gastos operativos por implementación de BM Fuente: Pacifpetrol

La Fig. 39 ilustra gráficamente la diferencia de gastos que se tuvo entre Bombeo Mecánico y Swab para los rubros de combustible y consumo de repuestos en el año 2012.



Fig. 39 Consumos mensuales de los sistemas a analizar para cambio de sistema.

Fuente: Pacifpetrol.

**Nota:** Para calcular el pronóstico de gastos por implementación de pozos de Bombeo Mecánico no se consideró rubros de Salarios, Beneficios, Horas Extras, Seguridad Social, Capacitación ni Alimentación, porque se tiene planeado utilizar al personal volante para operar y no contratar a nadie.

#### 6.6 Resolución del flujo de caja de la situación actual.

El flujo de caja es una ecuación financiera, lo que significa que suma algebraicamente cantidades de dinero percibidas (efectivamente cobradas o pagadas).

Flujo de caja = Ingresos –Desembolsos.

Como puede apreciarse la fórmula es muy sencilla desde el punto de vista matemático, ya que se trata de una simple resta, o mejor aún de una suma algebraica.

Como se indicó en la sección 6.1, la forma más efectiva para constatar ahorro es resolver ecuaciones de flujo de caja futuros para dos escenarios; uno, en el que no se implemente; y otro, en el que si se implemente el proyecto; luego, compararlos.

#### 6.6.1 Partición del Proyecto en Períodos.

Para proceder al análisis de un proyecto, se acostumbra a dividirlo en períodos. La duración de estos dependerá de las características del proyecto, del grado de precisión que se pretenda en la evaluación y de la confiabilidad que se tenga en la exactitud de los datos.

Una vez bien definidas las planillas de gastos e inversión, (Tablas N°19 y 20), se dividió el proyecto en períodos, para luego aplicar el flujo de caja.

La Compañía requiere optimizar el sistema de levantamiento artificial en la zona central del Campo donde considerara un horizonte de 4 años (48 meses). El estudio técnico del proyecto indica que se requiere de 36 pozos para cambio de sistema de levantamiento artificial. A partir del 4<sup>to</sup> mes se iniciará el cambio de sistema.

#### 6.6.2 Flujo de caja sin implementar el proyecto.

En el caso de que no se implementara el proyecto, la ecuación de flujo de caja tendrá dos únicos componentes:

FLUJO DE CAJA SIN PROYECTO = INGRESOS – GASTOS POR SW

Para el primer mes el flujo de caja será:

FLUJO DE CAJA SIN PROYECTO = (1500 bls \* \$ 60 / bls) - (\$ 27300.42)

FLUJO DE CAJA SIN PROYECTO = \$62.699,58

La Tabla 23 muestra la resolución de la ecuación de flujo de caja sin implementar el proyecto para 48 períodos futuros equivalentes a 48 meses. A cada flujo de caja se le aplicó actualización. La actualización se utiliza para evaluar propuestas de inversiones de capital, mediante la determinación del valor presente de los flujos netos futuros de efectivo, descontando a la tasa de rendimiento requerida por la empresa.

El valor actual neto se entiende a la diferencia entre los ingresos y egresos actualizados al precio actual. Es un procedimiento que permite calcular el valor presente de un determinado de flujo de caja futuro, originado por una inversión.

La tasa de interés que se usa para actualizar se denomina " tasa de descuento". La tasa de descuento va ser fijada por la persona que evalua el proyecto de inversión. En este caso el interés de la compañía Pacifpetrol es de un 15% anual, 1.25% mensual.

Para el cálculo del valor actual neto se utilizó una tasa de interés del 1.25% mensual. El flujo de caja sin la implementación del proyecto del Campo Ancón dió como resultado un valor actual neto de \$ 2088100.66 con una tasa de interés de 1.25% empleando la siguiente fórmula:

VALOR ACTUAL NETO = 
$$\frac{\text{FLUJO DE CAJA}}{(1 + \text{Tasa de interés})^{\text{No. del período}}}$$

Para el primer mes, el valor actualizado del flujo de caja será:

VALOR ACTUAL NETO = 
$$\frac{62699.58}{(1+0.0125)^1}$$
 = 61925.51

Finalmente se calculó el valor actual neto total sumando los valores actualizados de los 48 períodos. El VAN final fue de \$ 2765241.17 .Lo que quiere decir que todos los flujos de caja que se efectuarán en el futuro sin ejecutar el proyecto equivalen a que la compañía tenga \$ 2765241.17 en el tiempo 0.

|         | PRODUCCIÓN     | PRODUCCIÓN     |           |              |             |                      |                |                |           |              | FLUJO     | FLUJO        | VALOR     |
|---------|----------------|----------------|-----------|--------------|-------------|----------------------|----------------|----------------|-----------|--------------|-----------|--------------|-----------|
| PERÍODO | DIARIA BPD     | MENSUAL BPD    | INGRESOS  | IGRESOS      | GASTOS      | GASTOS DE            | GASTOS DE      | INVERSIÓN (\$) | EGRESOS   | EGRESOS      | DE CAJA   | DE CAJA      | ACTUAL    |
| Linoso  | (Declinación   | (Declinación   | IIII      | ACTUALIZADOS | DE SWAB(\$) | BOMBEO MECÁNICO (\$) | OPERACION (\$) | iii (y)        |           | ACTUALIZADOS | (\$)      | ACUMULADO    | NETO      |
|         | 0,25% mensual) | 0,25% mensual) |           |              |             |                      |                |                |           |              |           | (\$)         |           |
| 1       | 50             | 1.500,00       | 90.000,00 | 88.875,00    | -27.300,42  | 0,00                 | -27.300,42     | 0,00           | -27300,42 | -26959,16    | 62.699,58 | 62.699,58    | 61.925,51 |
| 2       | 49,88          | 1.496,25       | 89.775,00 | 88.652,81    | -27.300,42  | 0,00                 | -27.300,42     | 0,00           | -27300,42 | -26959,16    | 62.474,58 | 125.174,16   | 60.941,52 |
| 3       | 49,75          | 1.492,51       | 89.550,56 | 88.431,18    | -27.300,42  | 0,00                 | -27.300,42     | 0,00           | -27300,42 | -26959,16    | 62.250,14 | 187.424,31   | 59.972,93 |
| 4       | 49,63          | 1.488,78       | 89.326,69 | 88.210,10    | -27.300,42  | 0,00                 | -27.300,42     | 0,00           | -27300,42 | -26959,16    | 62.026,27 | 249.450,57   | 59.019,50 |
| 5       | 49,50          | 1.485,06       | 89.103,37 | 87.989,58    | -27.300,42  | 0,00                 | -27.300,42     | 0,00           | -27300,42 | -26959,16    | 61.802,95 | 311.253,52   | 58.081,00 |
| 6       | 49,38          | 1.481,34       | 88.880,61 | 87.769,60    | -27.300,42  | 0,00                 | -27.300,42     | 0,00           | -27300,42 | -26959,16    | 61.580,19 | 372.833,71   | 57.157,19 |
| 7       | 49,25          | 1.477,64       | 88.658,41 | 87.550,18    | -27.300,42  | 0,00                 | -27.300,42     | 0,00           | -27300,42 | -26959,16    | 61.357,99 | 434.191,70   | 56.247,85 |
| 8       | 49,13          | 1.473,95       | 88.436,76 | 87.331,30    | -27.300,42  | 0,00                 | -27.300,42     | 0,00           | -27300,42 | -26959,16    | 61.136,34 | 495.328,05   | 55.352,75 |
| 9       | 49,01          | 1.470,26       | 88.215,67 | 87.112,98    | -27.300,42  | 0,00                 | -27.300,42     | 0,00           | -27300,42 | -26959,16    | 60.915,25 | 556.243,30   | 54.471,68 |
| 10      | 48,89          | 1.466,59       | 87.995,13 | 86.895,19    | -27.300,42  | 0,00                 | -27.300,42     | 0,00           | -27300,42 | -26959,16    | 60.694,71 | 616.938,01   | 53.604,41 |
| 11      | 48,76          | 1.462,92       | 87.775,14 | 86.677,96    | -27.300,42  | 0,00                 | -27.300,42     | 0,00           | -27300,42 | -26959,16    | 60.474,73 | 677.412,74   | 52.750,74 |
| 12      | 48,64          | 1.459,26       | 87.555,71 | 86.461,26    | -27.300,42  | 0,00                 | -27.300,42     | 0,00           | -27300,42 | -26959,16    | 60.255,29 | 737.668,03   | 51.910,45 |
| 13      | 48,52          | 1.455,61       | 87.336,82 | 86.245,11    | -27.300,42  | 0,00                 | -27.300,42     | 0,00           | -27300,42 | -26959,16    | 60.036,40 | 797.704,43   | 51.083,33 |
| 14      | 48,40          | 1.451,97       | 87.118,48 | 86.029,49    | -27.300,42  | 0,00                 | -27.300,42     | 0,00           | -27300,42 | -26959,16    | 59.818,06 | 857.522,48   | 50.269,19 |
| 15      | 48,28          | 1.448,34       | 86.900,68 | 85.814,42    | -27.300,42  | 0,00                 | -27.300,42     | 0,00           | -27300,42 | -26959,16    | 59.600,26 | 917.122,74   | 49.467,81 |
| 16      | 48,16          | 1.444,72       | 86.683,43 | 85.599,88    | -27.300,42  | 0,00                 | -27.300,42     | 0,00           | -27300,42 | -26959,16    | 59.383,01 | 976.505,75   | 48.679,00 |
| 17      | 48,04          | 1.441,11       | 86.466,72 | 85.385,88    | -27.300,42  | 0,00                 | -27.300,42     | 0,00           | -27300,42 | -26959,16    | 59.166,30 | 1.035.672,05 | 47.902,58 |
| 18      | 47,92          | 1.437,51       | 86.250,55 | 85.172,42    | -27.300,42  | 0,00                 | -27.300,42     | 0,00           | -27300,42 | -26959,16    | 58.950,13 | 1.094.622,18 | 47.138,33 |
| 19      | 47,80          | 1.433,92       | 86.034,93 | 84.959,49    | -27.300,42  | 0,00                 | -27.300,42     | 0,00           | -27300,42 | -26959,16    | 58.734,51 | 1.153.356,69 | 46.386,08 |
| 20      | 47,68          | 1.430,33       | 85.819,84 | 84.747,09    | -27.300,42  | 0,00                 | -27.300,42     | 0,00           | -27300,42 | -26959,16    | 58.519,42 | 1.211.876,11 | 45.645,65 |
| 21      | 47,56          | 1.426,75       | 85.605,29 | 84.535,22    | -27.300,42  | 0,00                 | -27.300,42     | 0,00           | -27300,42 | -26959,16    | 58.304,87 | 1.270.180,98 | 44.916,84 |
| 22      | 47,44          | 1.423,19       | 85.391,28 | 84.323,88    | -27.300,42  | 0,00                 | -27.300,42     | 0,00           | -27300,42 | -26959,16    | 58.090,86 | 1.328.271,84 | 44.199,47 |
| 23      | 47,32          | 1.419,63       | 85.177,80 | 84.113,07    | -27.300,42  | 0,00                 | -27.300,42     | 0,00           | -27300,42 | -26959,16    | 57.877,38 | 1.386.149,21 | 43.493,38 |

Tabla N° 23. Flujo de caja sin implementación del proyecto. Elaborado por: Jenny Guale.

| PERÍODO | PRODUCCIÓN<br>DIARIA BPD<br>(Declinación<br>0,25% mensual) |             | INGRESOS  | IGRESOS<br>ACTUALIZADOS | GASTOS<br>DE SWAB(\$) | GASTOS DE<br>BOMBEO MECÁNICO (\$) | GASTOS DE<br>OPERACIÓN (\$) | INVERSIÓN (\$) | EGRESOS   | EGRESOS<br>ACTUALIZADOS | FLUJO<br>DE CAJA<br>(\$) | FLUJO<br>DE CAJA<br>ACUMULADO<br>(\$) | VALOR<br>ACTUAL<br>NETO |
|---------|------------------------------------------------------------|-------------|-----------|-------------------------|-----------------------|-----------------------------------|-----------------------------|----------------|-----------|-------------------------|--------------------------|---------------------------------------|-------------------------|
| 24      | 47,20                                                      | 1.416,08    | 84.964,85 | 83.902,79               | -27.300,42            | 0,00                              | -27.300,42                  | 0,00           | -27300,42 | -26959,16               | 57.664,43                | 1.443.813,65                          | 42.798,37               |
| 25      | 47,08                                                      | 1.412,54    | 84.752,44 | 83.693,04               | -27.300,42            | 0,00                              | -27.300,42                  | 0,00           | -27300,42 | -26959,16               | 57.452,02                | 1.501.265,67                          | 42.114,29               |
| 26      | 46,97                                                      | 1.409,01    | 84.540,56 | 83.483,80               | -27.300,42            | 0,00                              | -27.300,42                  | 0,00           | -27300,42 | -26959,16               | 57.240,14                | 1.558.505,81                          | 41.440,97               |
| 27      | 46,85                                                      | 1.405,49    | 84.329,21 | 83.275,09               | -27.300,42            | 0,00                              | -27.300,42                  | 0,00           | -27300,42 | -26959,16               | 57.028,79                | 1.615.534,60                          | 40.778,22               |
| 28      | 46,73                                                      | 1.401,97    | 84.118,39 | 83.066,91               | -27.300,42            | 0,00                              | -27.300,42                  | 0,00           | -27300,42 | -26959,16               | 56.817,97                | 1.672.352,56                          | 40.125,90               |
| 29      | 46,62                                                      | 1.398,47    | 83.908,09 | 82.859,24               | -27.300,42            | 0,00                              | -27.300,42                  | 0,00           | -27300,42 | -26959,16               | 56.607,67                | 1.728.960,24                          | 39.483,84               |
| 30      | 46,50                                                      | 1.394,97    | 83.698,32 | 82.652,09               | -27.300,42            | 0,00                              | -27.300,42                  | 0,00           | -27300,42 | -26959,16               | 56.397,90                | 1.785.358,14                          | 38.851,87               |
| 31      | 46,38                                                      | 1.391,48    | 83.489,07 | 82.445,46               | -27.300,42            | 0,00                              | -27.300,42                  | 0,00           | -27300,42 | -26959,16               | 56.188,65                | 1.841.546,79                          | 38.229,85               |
| 32      | 46,27                                                      | 1.388,01    | 83.280,35 | 82.239,35               | -27.300,42            | 0,00                              | -27.300,42                  | 0,00           | -27300,42 | -26959,16               | 55.979,93                | 1.897.526,72                          | 37.617,62               |
| 33      | 46,15                                                      | 1.384,54    | 83.072,15 | 82.033,75               | -27.300,42            | 0,00                              | -27.300,42                  | 0,00           | -27300,42 | -26959,16               | 55.771,73                | 1.953.298,45                          | 37.015,03               |
| 34      | 46,04                                                      | 1.381,07    | 82.864,47 | 81.828,66               | -27.300,42            | 0,00                              | -27.300,42                  | 0,00           | -27300,42 | -26959,16               | 55.564,05                | 2.008.862,50                          | 36.421,92               |
| 35      | 45,92                                                      | 1.377,62    | 82.657,31 | 81.624,09               | -27.300,42            | 0,00                              | -27.300,42                  | 0,00           | -27300,42 | -26959,16               | 55.356,89                | 2.064.219,39                          | 35.838,15               |
| 36      | 45,81                                                      | 1.374,18    | 82.450,66 | 81.420,03               | -27.300,42            | 0,00                              | -27.300,42                  | 0,00           | -27300,42 | -26959,16               | 55.150,25                | 2.119.369,64                          | 35.263,57               |
| 37      | 45,69                                                      | 1.370,74    | 82.244,54 | 81.216,48               | -27.300,42            | 0,00                              | -27.300,42                  | 0,00           | -27300,42 | -26959,16               | 54.944,12                | 2.174.313,76                          | 34.698,05               |
| 38      | 45,58                                                      | 1.367,32    | 82.038,93 | 81.013,44               | -27.300,42            | 0,00                              | -27.300,42                  | 0,00           | -27300,42 | -26959,16               | 54.738,51                | 2.229.052,26                          | 34.141,43               |
| 39      | 45,46                                                      | 1.363,90    | 81.833,83 | 80.810,91               | -27.300,42            | 0,00                              | -27.300,42                  | 0,00           | -27300,42 | -26959,16               | 54.533,41                | 2.283.585,67                          | 33.593,59               |
| 40      | 45,35                                                      | 1.360,49    | 81.629,24 | 80.608,88               | -27.300,42            | 0,00                              | -27.300,42                  | 0,00           | -27300,42 | -26959,16               | 54.328,83                | 2.337.914,50                          | 33.054,38               |
| 41      | 45,24                                                      | 1.357,09    | 81.425,17 | 80.407,36               | -27.300,42            | 0,00                              | -27.300,42                  | 0,00           | -27300,42 | -26959,16               | 54.124,75                | 2.392.039,25                          | 32.523,68               |
| 42      | 45,12                                                      | 1.353,69    | 81.221,61 | 80.206,34               | -27.300,42            | 0,00                              | -27.300,42                  | 0,00           | -27300,42 | -26959,16               | 53.921,19                | 2.445.960,44                          | 32.001,34               |
| 43      | 45,01                                                      | 1.350,31    | 81.018,55 | 80.005,82               | -27.300,42            | 0,00                              | -27.300,42                  | 0,00           | -27300,42 | -26959,16               | 53.718,14                | 2.499.678,58                          | 31.487,24               |
| 44      | 44,90                                                      | 1.346,93    | 80.816,01 | 79.805,81               | -27.300,42            | 0,00                              | -27.300,42                  | 0,00           | -27300,42 | -26959,16               | 53.515,59                | 2.553.194,17                          | 30.981,25               |
| 45      | 44,79                                                      | 1.343,57    | 80.613,97 | 79.606,29               | -27.300,42            | 0,00                              | -27.300,42                  | 0,00           | -27300,42 | -26959,16               | 53.313,55                | 2.606.507,72                          | 30.483,24               |
| 46      | 44,67                                                      | 1.340,21    | 80.412,43 | 79.407,28               | -27.300,42            | 0,00                              | -27.300,42                  | 0,00           | -27300,42 | -26959,16               | 53.112,01                | 2.659.619,73                          | 29.993,10               |
| 47      | 44,56                                                      | 1.336,86    | 80.211,40 | 79.208,76               | -27.300,42            | 0,00                              | -27.300,42                  | 0,00           | -27300,42 | -26959,16               | 52.910,98                | 2.712.530,71                          | 29.510,69               |
| 48      | 44,45                                                      | 1.333,51    | 80.010,87 | 79.010,74               | -27.300,42            | 0,00                              | -27.300,42                  | 0,00           | -27300,42 | -26959,16               | 52.710,45                | 2.765.241,17                          | 29.035,90               |
| Aconti  | nuación de                                                 | la Tabla N° | 23 Flujo  | de caja sir             | n implementación      | del proyecto.                     |                             |                |           |                         | 2.765.241,17             |                                       | 2.088.100,66            |

#### 6.6.3 Flujo de caja implementando el proyecto.

En el caso de que se implementara el proyecto, la ecuación de flujo de caja se vuelve un poco más compleja porque se deberá incluir: inversiones, gastos nuevos por implementación de pozos con BM y, eliminar los gastos de SW en un tiempo determinado.

## FLUJO DE CAJA CON PROYECTO = INGRESOS – GASTOS POR SW – GASTOS POR BM – INVERSIÓN

Como se puede ver en la Tabla 24, que corresponde al flujo de caja en los mismos 48 períodos, pero, con el proyecto en implementación: la columna de ingresos no varía porque como se indicó, el proyecto no generará mayor producción; en la columna de Gastos por Swab, en el mes 7, los gastos se reducen de \$27300,42 a 0, debido a que en este período se saca de operación a la unidad de SW responsable de extraer los 50 bls que generan los ingresos. Por otro lado, en la columna de inversiones, se observa que a partir del período 4 hasta el 9 la compañía invierte \$ 637648.43 para crear la infraestructura que requerirá el proyecto: en el mes 10, la inversión se ha completado y vuelve a ser 0; por último, en la columna de gastos de operación por Bombeo Mecánico, a partir del período 4, cuando comienza la inversión, el gasto por Bombeo Mecánico se incrementa mensualmente \$,851.50 que es el costo de operación por cada 6 pozos de bombeo mecánico, hasta llegar a \$ 5109.01 y se estabilizará en ese valor, este es el costo de operación de los nuevos 36 pozos de Bombeo Mecánico.

Se actualizaron todos los valores de flujos de caja y se calculó el valor actual neto total sumando los valores actualizados de los 48 períodos. El VAN final implementando el proyecto fue de \$2'167192.47 . Lo que quiere decir que todos los flujos de caja que se efectuarán en el futuro sin ejecutar el proyecto equivalen a que la compañía tenga \$ 2'167192.47 en el tiempo 0 que es un número mayor a \$ 2088100.66 que era el VAN final sin implementar el proyecto. Esto demuestra la factibilidad económica de llevar a cabo el proyecto.

|          | PRODUCCIÓN     | PRODUCCIÓN     | INGRESOS        |              |             | GASTOS DE |            |             |            |              | FLUJO      | FLUJO       | FLUJO        | VALOR     |
|----------|----------------|----------------|-----------------|--------------|-------------|-----------|------------|-------------|------------|--------------|------------|-------------|--------------|-----------|
| PERÍODO  | DIARIA BPD     | MENSUAL BPD    | POR             | INGRESOS     | GASTOS      | BOMBEO    | _          | INVERSIÓN   |            | EGRESOS      | DE CAJA    | DE CAJA     | DE CAJA      | ACTUAL    |
| FLINIODO | (Declinación   | 0,25% mensual) | PRODUCCIÓN (\$) | ACTUALIZADOS | DE SWAB(\$) | MECÁNICO  | OPERACIÓN  | (\$)        | EGRESOS    | ACTUALIZADOS | (\$)       | ACTUALIZADO | ACUMULADO    | NETO      |
|          | 0,25% mensual) | (Declinación   | (\$)            |              |             | (\$)      | (\$)       |             |            |              |            |             | (\$)         |           |
| 1        | 50             | 1.500,00       | 90.000,00       | 88.875,00    | -27.300,42  | 0,00      | -27.300,42 | 0,00        | -27300,42  | -26959,16    | 62.699,58  | 61.915,84   | 62.699,58    | 61925,51  |
| 2        | 49,88          | 1.496,25       | 89.775,00       | 88.652,81    | -27.300,42  | 0,00      | -27.300,42 | 0,00        | -27300,42  | -26959,16    | 62.474,58  | 61.693,65   | 125.174,16   | 60941,52  |
| 3        | 49,75          | 1.492,51       | 89.550,56       | 88.431,18    | -27.300,42  | 0,00      | -27.300,42 | 0,00        | -27300,42  | -26959,16    | 62.250,14  | 61.472,02   | 187.424,31   | 59972,93  |
| 4        | 49,63          | 1.488,78       | 89.326,69       | 88.210,10    | -27.300,42  | -851,50   | -28.151,92 | -106.274,74 | -134426,66 | -132746,33   | -45.099,97 | -44.536,22  | 142.324,33   | -42913,72 |
| 5        | 49,50          | 1.485,06       | 89.103,37       | 87.989,58    | -27.300,42  | -1.703,00 | -29.003,42 | -106.274,74 | -135278,16 | -133587,18   | -46.174,79 | -45.597,61  | 96.149,54    | -43394,01 |
| 6        | 49,38          | 1.481,34       | 88.880,61       | 87.769,60    | -27.300,42  | -2.554,50 | -29.854,92 | -106.274,74 | -136129,66 | -134428,04   | -47.249,05 | -46.658,44  | 48.900,49    | -43855,38 |
| 7        | 49,25          | 1.477,64       | 88.658,41       | 87.550,18    | 0,00        | -3.406,00 | -3.406,00  | -106.274,74 | -109680,74 | -108309,73   | -21.022,33 | -20.759,55  | 27.878,16    | -19271,51 |
| 8        | 49,13          | 1.473,95       | 88.436,76       | 87.331,30    | 0,00        | -4.257,50 | -4.257,50  | -106.274,74 | -110532,24 | -109150,59   | -22.095,48 | -21.819,29  | 5.782,68     | -20005,21 |
| 9        | 49,01          | 1.470,26       | 88.215,67       | 87.112,98    | 0,00        | -5.109,01 | -5.109,01  | -106.274,74 | -111383,74 | -109991,45   | -23.168,07 | -22.878,47  | -17.385,39   | -20717,37 |
| 10       | 48,89          | 1.466,59       | 87.995,13       | 86.895,19    | 0,00        | -5.109,01 | -5.109,01  | 0,00        | -5109,01   | -5045,14     | 82.886,13  | 81.850,05   | 65.500,73    | 73203,45  |
| 11       | 48,76          | 1.462,92       | 87.775,14       | 86.677,96    | 0,00        | -5.109,01 | -5.109,01  | 0,00        | -5109,01   | -5045,14     | 82.666,14  | 81.632,81   | 148.166,87   | 72107,81  |
| 12       | 48,64          | 1.459,26       | 87.555,71       | 86.461,26    | 0,00        | -5.109,01 | -5.109,01  | 0,00        | -5109,01   | -5045,14     | 82.446,70  | 81.416,12   | 230.613,57   | 71028,54  |
| 13       | 48,52          | 1.455,61       | 87.336,82       | 86.245,11    | 0,00        | -5.109,01 | -5.109,01  | 0,00        | -5109,01   | -5045,14     | 82.227,81  | 81.199,96   | 312.841,39   | 69965,40  |
| 14       | 48,40          | 1.451,97       | 87.118,48       | 86.029,49    | 0,00        | -5.109,01 | -5.109,01  | 0,00        | -5109,01   | -5045,14     | 82.009,47  | 80.984,35   | 394.850,86   | 68918,14  |
| 15       | 48,28          | 1.448,34       | 86.900,68       | 85.814,42    | 0,00        | -5.109,01 | -5.109,01  | 0,00        | -5109,01   | -5045,14     | 81.791,67  | 80.769,28   | 476.642,53   | 67886,53  |
| 16       | 48,16          | 1.444,72       | 86.683,43       | 85.599,88    | 0,00        | -5.109,01 | -5.109,01  | 0,00        | -5109,01   | -5045,14     | 81.574,42  | 80.554,74   | 558.216,95   | 66870,33  |
| 17       | 48,04          | 1.441,11       | 86.466,72       | 85.385,88    | 0,00        | -5.109,01 | -5.109,01  | 0,00        | -5109,01   | -5045,14     | 81.357,71  | 80.340,74   | 639.574,67   | 65869,32  |
| 18       | 47,92          | 1.437,51       | 86.250,55       | 85.172,42    | 0,00        | -5.109,01 | -5.109,01  | 0,00        | -5109,01   | -5045,14     | 81.141,55  | 80.127,28   | 720.716,21   | 64883,27  |
| 19       | 47,80          | 1.433,92       | 86.034,93       | 84.959,49    | 0,00        | -5.109,01 | -5.109,01  | 0,00        | -5109,01   | -5045,14     | 80.925,92  | 79.914,35   | 801.642,13   | 63911,95  |
| 20       | 47,68          | 1.430,33       | 85.819,84       | 84.747,09    | 0,00        | -5.109,01 | -5.109,01  | 0,00        | -5109,01   | -5045,14     | 80.710,83  | 79.701,95   | 882.352,97   | 62955,14  |
| 21       | 47,56          | 1.426,75       | 85.605,29       | 84.535,22    | 0,00        | -5.109,01 | -5.109,01  | 0,00        | -5109,01   | -5045,14     | 80.496,28  | 79.490,08   | 962.849,25   | 62012,63  |
| 22       | 47,44          | 1.423,19       | 85.391,28       | 84.323,88    | 0,00        | -5.109,01 | -5.109,01  | 0,00        | -5109,01   | -5045,14     | 80.282,27  | 79.278,74   | 1.043.131,52 | 61084,21  |
| 23       | 47,32          | 1.419,63       | 85.177,80       | 84.113,07    | 0,00        | -5.109,01 | -5.109,01  | 0,00        | -5109,01   | -5045,14     | 80.068,79  | 79.067,93   | 1.123.200,31 | 60169,66  |

Tabla N° 24 Flujo de caja implementando el proyecto.

|         | PRODUCCIÓN     | PRODUCCIÓN     | INGRESOS        |              |             | GASTOS DE |           |           |          |              | FLUJO        | FLUJO       | FLUJO        | VALOR      |
|---------|----------------|----------------|-----------------|--------------|-------------|-----------|-----------|-----------|----------|--------------|--------------|-------------|--------------|------------|
|         | DIARIA BPD     | MENSUAL BPD    | POR             | INGRESOS     | GASTOS      | BOMBEO    | GASTOS DE | INVERSIÓN |          | EGRESOS      | DE CAJA      | DE CAJA     | DE CAJA      | ACTUAL     |
| PERÍODO | (Declinación   | 0,25% mensual) | PRODUCCIÓN (\$) | ACTUALIZADOS | DE SWAB(\$) | MECÁNICO  | OPERACIÓN | (\$)      | EGRESOS  | ACTUALIZADOS | (\$)         | ACTUALIZADO | ACUMULADO    | NETO       |
|         | 0,25% mensual) | (Declinación   | (\$)            |              |             | (\$)      | (\$)      |           |          |              |              |             | (\$)         |            |
| 24      | 47,20          | 1.416,08       | 84.964,85       | 83.902,79    | 0,00        | -5.109,01 | -5.109,01 | 0,00      | -5109,01 | -5045,14     | 79.855,85    | 78.857,65   | 1.203.056,16 | 59268,78   |
| 25      | 47,08          | 1.412,54       | 84.752,44       | 83.693,04    | 0,00        | -5.109,01 | -5.109,01 | 0,00      | -5109,01 | -5045,14     | 79.643,44    | 78.647,89   | 1.282.699,60 | 58381,36   |
| 26      | 46,97          | 1.409,01       | 84.540,56       | 83.483,80    | 0,00        | -5.109,01 | -5.109,01 | 0,00      | -5109,01 | -5045,14     | 79.431,55    | 78.438,66   | 1.362.131,15 | 57507,20   |
| 27      | 46,85          | 1.405,49       | 84.329,21       | 83.275,09    | 0,00        | -5.109,01 | -5.109,01 | 0,00      | -5109,01 | -5045,14     | 79.220,20    | 78.229,95   | 1.441.351,35 | 56646,11   |
| 28      | 46,73          | 1.401,97       | 84.118,39       | 83.066,91    | 0,00        | -5.109,01 | -5.109,01 | 0,00      | -5109,01 | -5045,14     | 79.009,38    | 78.021,76   | 1.520.360,73 | 55797,89   |
| 29      | 46,62          | 1.398,47       | 83.908,09       | 82.859,24    | 0,00        | -5.109,01 | -5.109,01 | 0,00      | -5109,01 | -5045,14     | 78.799,08    | 77.814,10   | 1.599.159,82 | 54962,34   |
| 30      | 46,50          | 1.394,97       | 83.698,32       | 82.652,09    | 0,00        | -5.109,01 | -5.109,01 | 0,00      | -5109,01 | -5045,14     | 78.589,31    | 77.606,95   | 1.677.749,13 | 54139,29   |
| 31      | 46,38          | 1.391,48       | 83.489,07       | 82.445,46    | 0,00        | -5.109,01 | -5.109,01 | 0,00      | -5109,01 | -5045,14     | 78.380,07    | 77.400,32   | 1.756.129,20 | 53328,53   |
| 32      | 46,27          | 1.388,01       | 83.280,35       | 82.239,35    | 0,00        | -5.109,01 | -5.109,01 | 0,00      | -5109,01 | -5045,14     | 78.171,35    | 77.194,20   | 1.834.300,55 | 52529,90   |
| 33      | 46,15          | 1.384,54       | 83.072,15       | 82.033,75    | 0,00        | -5.109,01 | -5.109,01 | 0,00      | -5109,01 | -5045,14     | 77.963,14    | 76.988,61   | 1.912.263,69 | 51743,20   |
| 34      | 46,04          | 1.381,07       | 82.864,47       | 81.828,66    | 0,00        | -5.109,01 | -5.109,01 | 0,00      | -5109,01 | -5045,14     | 77.755,46    | 76.783,52   | 1.990.019,15 | 50968,26   |
| 35      | 45,92          | 1.377,62       | 82.657,31       | 81.624,09    | 0,00        | -5.109,01 | -5.109,01 | 0,00      | -5109,01 | -5045,14     | 77.548,30    | 76.578,95   | 2.067.567,46 | 50204,91   |
| 36      | 45,81          | 1.374,18       | 82.450,66       | 81.420,03    | 0,00        | -5.109,01 | -5.109,01 | 0,00      | -5109,01 | -5045,14     | 77.341,66    | 76.374,89   | 2.144.909,12 | 49452,97   |
| 37      | 45,69          | 1.370,74       | 82.244,54       | 81.216,48    | 0,00        | -5.109,01 | -5.109,01 | 0,00      | -5109,01 | -5045,14     | 77.135,53    | 76.171,34   | 2.222.044,65 | 48712,26   |
| 38      | 45,58          | 1.367,32       | 82.038,93       | 81.013,44    | 0,00        | -5.109,01 | -5.109,01 | 0,00      | -5109,01 | -5045,14     | 76.929,92    | 75.968,30   | 2.298.974,57 | 47982,63   |
| 39      | 45,46          | 1.363,90       | 81.833,83       | 80.810,91    | 0,00        | -5.109,01 | -5.109,01 | 0,00      | -5109,01 | -5045,14     | 76.724,82    | 75.765,76   | 2.375.699,40 | 47263,91   |
| 40      | 45,35          | 1.360,49       | 81.629,24       | 80.608,88    | 0,00        | -5.109,01 | -5.109,01 | 0,00      | -5109,01 | -5045,14     | 76.520,24    | 75.563,74   | 2.452.219,64 | 46555,93   |
| 41      | 45,24          | 1.357,09       | 81.425,17       | 80.407,36    | 0,00        | -5.109,01 | -5.109,01 | 0,00      | -5109,01 | -5045,14     | 76.316,17    | 75.362,21   | 2.528.535,80 | 45858,54   |
| 42      | 45,12          | 1.353,69       | 81.221,61       | 80.206,34    | 0,00        | -5.109,01 | -5.109,01 | 0,00      | -5109,01 | -5045,14     | 76.112,60    | 75.161,20   | 2.604.648,41 | 45171,58   |
| 43      | 45,01          | 1.350,31       | 81.018,55       | 80.005,82    | 0,00        | -5.109,01 | -5.109,01 | 0,00      | -5109,01 | -5045,14     | 75.909,55    | 74.960,68   | 2.680.557,96 | 44494,88   |
| 44      | 44,90          | 1.346,93       | 80.816,01       | 79.805,81    | 0,00        | -5.109,01 | -5.109,01 | 0,00      | -5109,01 | -5045,14     | 75.707,00    | 74.760,67   | 2.756.264,96 | 43828,30   |
| 45      | 44,79          | 1.343,57       | 80.613,97       | 79.606,29    | 0,00        | -5.109,01 | -5.109,01 | 0,00      | -5109,01 | -5045,14     | 75.504,96    | 74.561,15   | 2.831.769,92 | 43171,69   |
| 46      | 44,67          | 1.340,21       | 80.412,43       | 79.407,28    | 0,00        | -5.109,01 | -5.109,01 | 0,00      | -5109,01 | -5045,14     | 75.303,43    | 74.362,14   | 2.907.073,35 | 42524,90   |
| 47      | 44,56          | 1.336,86       | 80.211,40       | 79.208,76    | 0,00        | -5.109,01 | -5.109,01 | 0,00      | -5109,01 | -5045,14     | 75.102,40    | 74.163,62   | 2.982.175,75 | 41887,78   |
| 48      | 44,45          | 1.333,51       | 80.010,87       | 79.010,74    | 0,00        | -5.109,01 | -5.109,01 | 0,00      | -5109,01 | -5045,14     | 74.901,87    | 73.965,60   | 3.057.077,62 | 41260,18   |
|         |                |                |                 | 4.024.715,52 |             |           |           |           |          | -1005851,37  | 3.057.077,62 |             |              | 2167192,47 |

Acontinuación de la Tabla N° 24 Flujo de caja implementando el proyecto.

En la siguiente gráfica, se puede visualizar que el Bombeo Mecánico se encuentra en ventaja, desde el punto de vista económico con respecto al otro método de levantamiento artificial debido a los gastos operativos relativamente bajos. Es clara la tendencia de la curva en la Fig. 40. La producción mensual es 619.7 barriles por día y el costo de barril \$ 19.

El método de Swab tiene un costo operativo superior como podemos observar en la Fig. 40, (Ver descripción de la gráfica en el anexo V), tiene una producción diaria de 302.9 y su costo por barril es \$ 24; este, es uno de los métodos con mayor costo de producción, es preferible utilizar otro sistema de levantamiento como el de Bombeo Mecánico que es la mejor opción; por esta razón, se decidió hacer un estudio de pozos para realizar el análisis económico de los gastos que consume esta unidad, El método de Swab no desarrolla ingresos económicos a la Empresa.

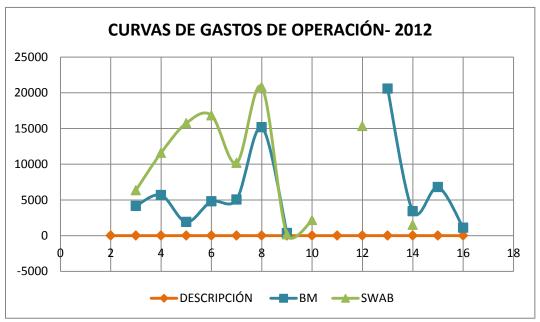



Fig. 40 Gastos mensuales de Bombeo Mecánico. Año 2012

#### 6.6.4 Comparación entre flujos de caja.

Los valores de flujo de caja de los dos escenarios fueron tabulados y comparados para obtener ciertos indicadores económicos importantes en la evaluación del proyecto. (Ver Tabla  $N^{\circ}$  25)

|         | FLUJO           | FLUJO                    | BENEFICIO   | BENEFICIO   |
|---------|-----------------|--------------------------|-------------|-------------|
|         | DE CAJA         | DE CAJA                  | ECONÓMICO   | ECONÓMICO   |
| PERÍODO | EN LA SITUACIÓN | IMPLEMENTANDO            | PERIÓDICO   | ACUMULADO   |
|         | ACTUAL (\$)     | EL PROYECTO (\$)         |             |             |
| 1       | 62.699,58       | 62.699,58                | 0,00        | -           |
| 2       | 62.474,58       | 62.474,58 62.474,58 0,00 |             | 0,00        |
| 3       | 62.250,14       | 62.250,14                | 0,00        | 0,00        |
| 4       | 62.026,27       | -45.099,97               | -107.126,24 | -107.126,24 |
| 5       | 61.802,95       | -46.174,79               | -107.977,74 | -215.103,98 |
| 6       | 61.580,19       | -47.249,05               | -108.829,24 | -323.933,22 |
| 7       | 61.357,99       | -21.022,33               | -82.380,32  | -406.313,55 |
| 8       | 61.136,34       | -22.095,48               | -83.231,82  | -489.545,37 |
| 9       | 60.915,25       | -23.168,07               | -84.083,33  | -573.628,69 |
| 10      | 60.694,71       | 82.886,13                | 22.191,41   | -551.437,28 |
| 11      | 60.474,73       | 82.666,14                | 22.191,41   | -529.245,87 |
| 12      | 60.255,29       | 82.446,70                | 22.191,41   | -507.054,45 |
| 13      | 60.036,40       | 82.227,81                | 22.191,41   | -484.863,04 |
| 14      | 59.818,06       | 82.009,47                | 22.191,41   | -462.671,63 |
| 15      | 59.600,26       | 81.791,67                | 22.191,41   | -440.480,21 |
| 16      | 59.383,01       | 81.574,42                | 22.191,41   | -418.288,80 |
| 17      | 59.166,30       | 81.357,71                | 22.191,41   | -396.097,38 |
| 18      | 58.950,13       | 81.141,55                | 22.191,41   | -373.905,97 |
| 19      | 58.734,51       | 80.925,92                | 22.191,41   | -351.714,56 |
| 20      | 58.519,42       | 80.710,83                | 22.191,41   | -329.523,14 |
| 21      | 58.304,87       | 80.496,28                | 22.191,41   | -307.331,73 |
| 22      | 58.090,86       | 80.282,27                | 22.191,41   | -285.140,31 |
| 23      | 57.877,38       | 80.068,79                | 22.191,41   | -262.948,90 |
| 24      | 57.664,43       | 79.855,85                | 22.191,41   | -240.757,49 |
| 25      | 57.452,02       | 79.643,44                | 22.191,41   | -218.566,07 |
| 26      | 57.240,14       | 79.431,55                | 22.191,41   | -196.374,66 |
| 27      | 57.028,79       | 79.220,20                | 22.191,41   | -174.183,24 |
| 28      | 56.817,97       | 79.009,38                | 22.191,41   | -151.991,83 |
| 29      | 56.607,67       | 78.799,08                | 22.191,41   | -129.800,42 |
| 30      | 56.397,90       | 78.589,31                | 22.191,41   | -107.609,00 |
| 31      | 56.188,65       | 78.380,07                | 22.191,41   | -85.417,59  |
| 32      | 55.979,93       | 78.171,35                | 22.191,41   | -63.226,17  |
| 33      | 55.771,73       | 77.963,14                | 22.191,41   | -41.034,76  |
| 34      | 55.564,05       | 77.755,46                | 22.191,41   | -18.843,35  |
| 35      | 55.356,89       | 77.548,30                | 22.191,41   | 3.348,07    |
| 36      | 55.150,25       | 77.341,66                | 22.191,41   | 25.539,48   |
| 37      | 54.944,12       | 77.135,53                | 22.191,41   | 47.730,89   |
| 38      | 54.738,51       | 76.929,92                | 22.191,41   | 69.922,31   |
| 39      | 54.533,41       | 76.724,82                | 22.191,41   | 92.113,72   |
| 40      | 54.328,83       | 76.520,24                | 22.191,41   | 114.305,14  |
| 41      | 54.124,75       | 76.316,17                | 22.191,41   | 136.496,55  |
| 42      | 53.921,19       | 76.112,60                | 22.191,41   | 158.687,96  |
| 43      | 53.718,14       | 75.909,55                | 22.191,41   | 180.879,38  |
| 44      | 53.515,59       | 75.707,00                | 22.191,41   | 203.070,79  |
| 45      | 53.313,55       | 75.504,96                | 22.191,41   | 225.262,21  |
| 46      | 53.112,01       | 75.303,43                | 22.191,41   | 247.453,62  |
| 47      | 52.910,98       | 75.102,40                | 22.191,41   | 269.645,03  |
| 48      | 52.710,45       | 74.901,87                | 22.191,41   | 291.836,45  |

Tabla N° 25 Análisis comparativo de flujo de caja.

Elaborado por: Guale Ricardo Jenny.

En la columna de beneficio económico periódico consta la diferencia entre el flujo de caja de cada período implementando el proyecto y sin implementar el proyecto. Este es un indicador del ahorro que se produce en cada período debido a la implementación del proyecto. Si estos valores son negativos como en los primeros

meses, la empresa cae en perjuicio económico, principalmente porque son meses de altos desembolsos debido a la inversión. A partir del mes 10 se ve valores positivos que indican un beneficio real en cada período igual a \$ 22191.41 debido a que la inversión cesa y la unidad de SW deja de operar.

En la columna de beneficio económico acumulado se puede ver el desempeño económico del proyecto en términos acumulados. Hasta el período 9 el perjuicio económico de la empresa se incrementa. En el mes 10 el perjuicio económico comienza a reducirse lentamente pero permanece negativo hasta el mes 34. En el mes 35 se comienza a tener valores positivos debido a que la acumulación de ahorros ha superado por primera vez a la acumulación de desembolsos y de ahí en adelante todo será beneficio. La máxima exposición del proyecto fue de \$ 573628.69 y se da en el período 9. El tiempo de repago del proyecto se da en el mes 35 como se ve en la Fig. 41.

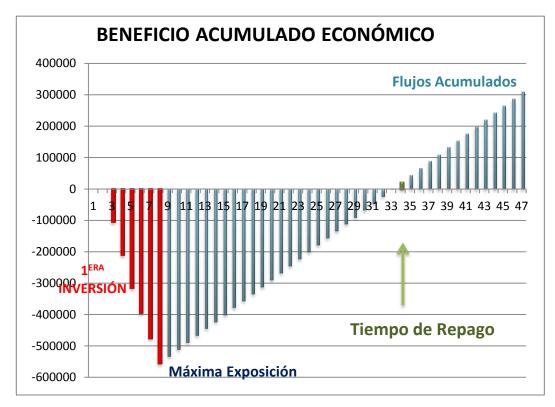



Fig. 41 Diagrama de indicadores de endeudamiento. Elaborado por: Guale Ricardo Jenny.

#### 6.6.5 Análisis comparativo de flujos de caja.

La comparación de las gráficas de los flujos de caja nos permite visualizar e interpretar la diferenciación entre la situación actual y la situación en realizar la implementación del proyecto en un futuro.

En la Fig. 42 podemos observar el comportamiento actual si no se realizaría ninguna campaña de optimización.

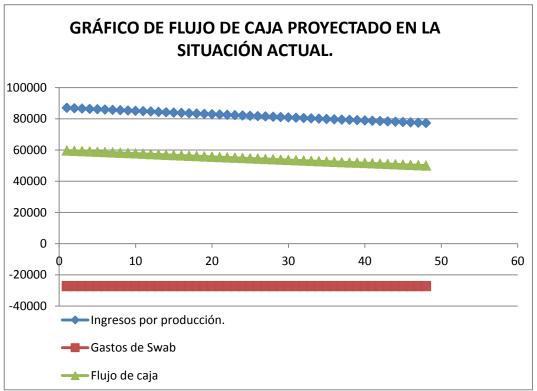



Fig. 42. Comportamiento del flujo de caja en la situación actual.

En cambio, implementando el proyecto podemos observar en la Fig. 43 la tendencia de la línea azul es igual al flujo de la situación actual; esto, se debe a que el cambio de SLA, beneficiará un ahorro operativo, mas no se incrementará la producción; es decir, que si se producía 50BPD actualmente, en la implementación del proyecto tendríamos los mismos 50BPD.

La tendencia roja indica los gastos de Swab; en los seis primeros meses tenemos los mismos gastos que en la situación actual; apartir del séptimo mes los gastos tienden a cero debido a que, en ese período, se eliminó la unidad.

La línea morada indica gastos primarios de Bombeo Mecánico que fueron necesarios para iniciar la implementación. En el primer período, la línea se mantiene constante hasta el tercer mes debido a que en esos períodos no es el arranque del proyecto; es decir, se mantiene en cero. La tendencia de la línea comienza apartir del cuarto mes cuandose inician los primeros gastos al cambiar los 6 primeros pozos de SW a BM; este costo es de \$ 851.50; la tendencia se incremeta hasta el noveno mes, período en el que culminan los 36 pozos seleccionados para el cambio de SLA.

La línea verde indica el comportamiento del flujo de caja donde podemos observar el beneficio económico comparándolo con la figura anterior.

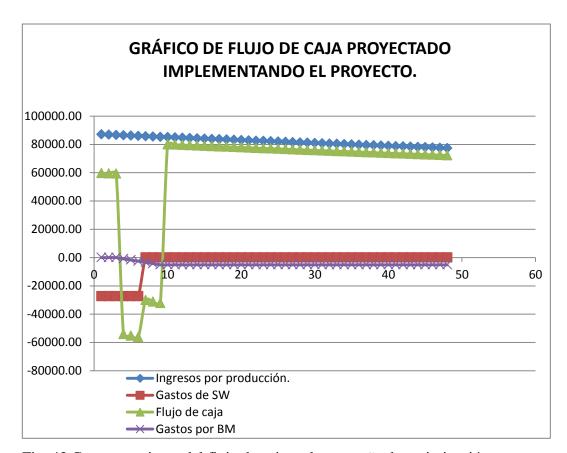



Fig. 43 Comportamiento del flujo de caja en la campaña de optimización.

Finalmente, en la Fig. 44 se proyecta la comparación de flujos de caja. Si no se implementara el proyecto, el ingreso a la empresa, a partir del décimo mes, sería \$60694.71; implementando la campaña de optimización tendremos una gran

diferencia en el ingreso que ascendería a \$ 82886.13; en el consiguiente beneficio económico períodico de \$22191.42.

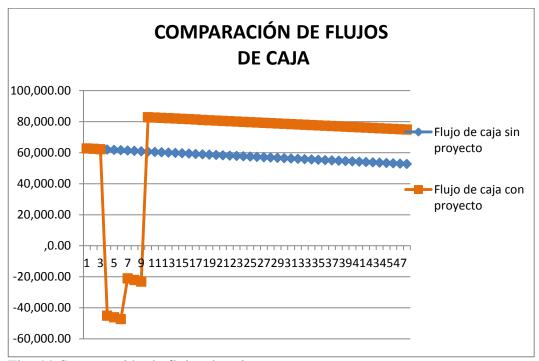



Fig. 44 Comparación de flujos de caja.

# CAPÍTULO VII CONCLUSIONES Y RECOMENDACIONES.

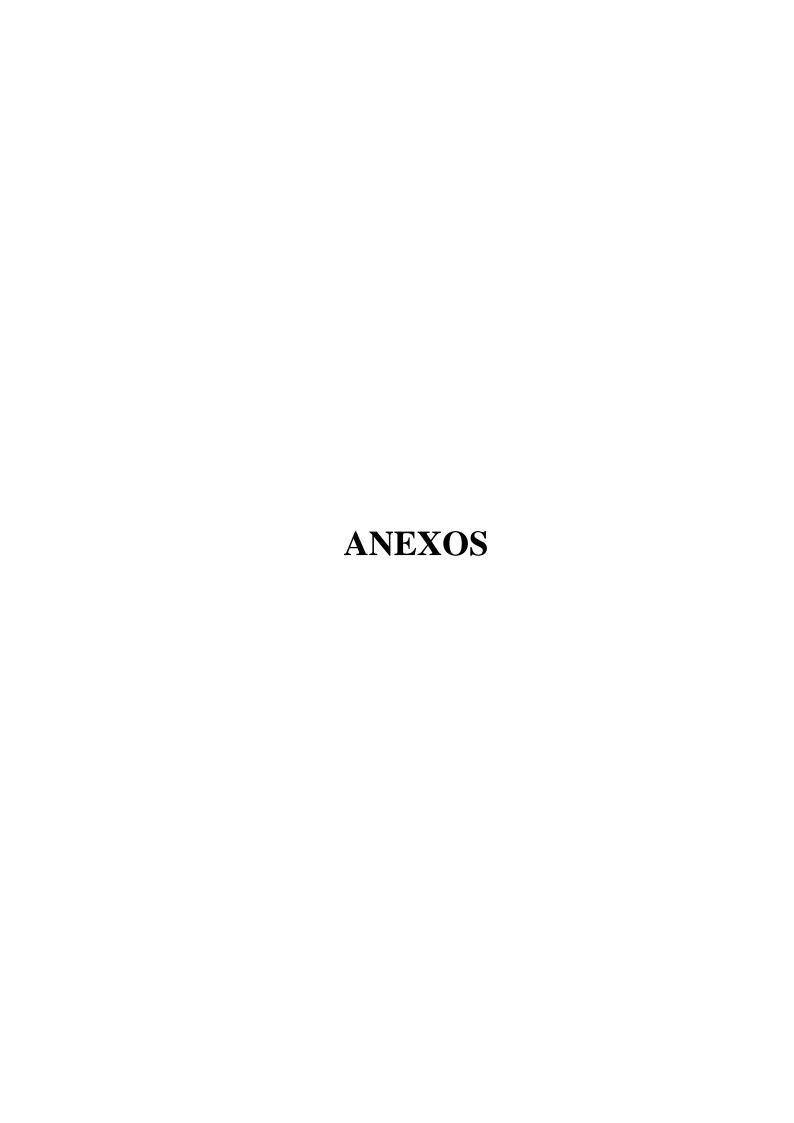
#### 7.1 CONCLUSIONES

- Los sistemas de levantamiento artificial actualmente en la zona Central del campo Ancón presenta un alto costo operativo, por: utilización de maquinarias pesadas, servicios de pulling, alto costo de combustibles, repuestos, y herramientas.
- No se realizó trabajos de mediciones de niveles de fluido en la zona central del Campo, a los pozos con potencial de 1 barril y ciclo 1 a 2 días por la producción de petróleo muy baja.
- Los niveles de fluidos cortos en el pozo ocasiona golpe de fluido, debido a que no se llena el barril de la bomba.
- Fueron evaluados 41 pozos pertenecientes a la sección Tigre, sección 66, sección 67 y sección 74, de las cuales 22 de ellos cumplieron con las condiciones requeridas para el cambio de sistema de Pistoneo a Bombeo Mecánico.
- La unidad de Pistoneo produce contaminación ambiental por la intervención continua en los pozos de cada una de las secciones de la zona Central.
- Embastonamientos continuas en las bomba de subsuelo por falta de lubricación de los Stuffing Box.
- Excesivo torque aplicado a la llave hidráulica al momento de manipular el control de tubing y cupla
- El uso de Herramienta Local para extraer el petróleo es altamente contaminante.

- No existe información para realizar el diseño API para determinar el cálculo del porcentaje de varillas para la selección aceptable del diseño de Bombeo Mecánico.
- En la auditoria mensual de enero a diciembre del 2012 se determinó un valor promedio de los costos operativos, para el Bombeo Mecánico es \$ 68997.57, comparándolo con el sistema de Pistoneo es \$ 109201.68 mensual para 4 unidades.

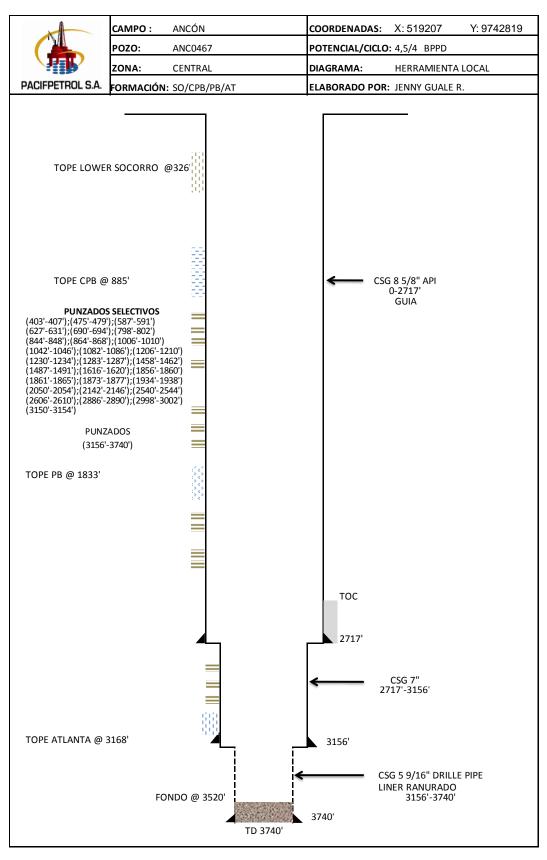
#### 7.2 RECOMENDACIONES.

- Continuar con las evaluaciones a los pozos de Pistoneo en la zona Norte y
   Sur para desarrollar futuros proyectos.
- La selección de los pozos es necesario que tengan un rango de producción mayor o igual a 3 barriles por intervención y ciclo de trabajo de 2 días para obtener una operación aceptable en la bomba de subsuelo.
- Realizar un control períodico a las unidades de Bombeo Mecánico para evitar que la variación de Golpes por minuto afecte el funcionamiento de extracción.
- Efectuar mediciones de caudales de gas a los pozos seleccionados para que estos sean contabilizados en la producción de gas.
- En la operación de pulling, las varillas deben manipularse con cuidado para evitar cualquier golpe que pueda dañarlas, y antes de enroscar las varillas para ser bajadas al pozo, debe lubricarse el pin con una pequeña cantidad de grasa especial.
- Eliminar la extracción por Herramienta Local por su alto costo operativo.

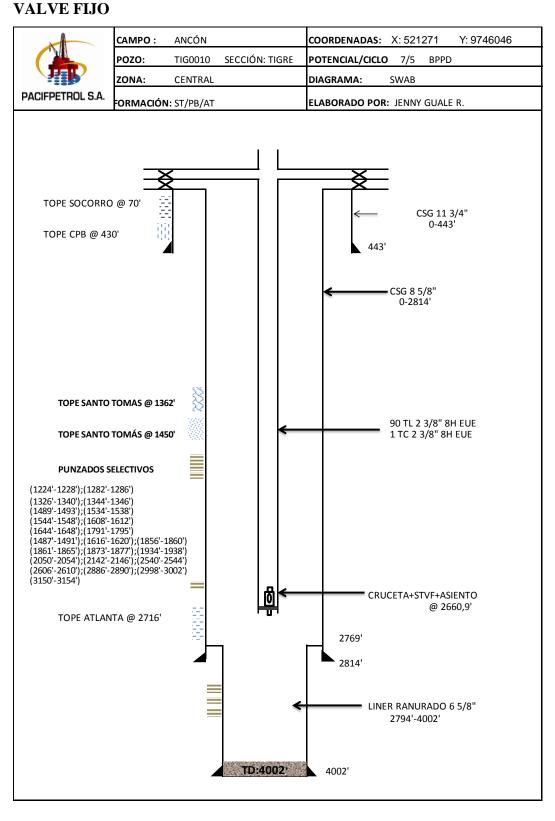

- Colocar tanques en las locaciones de los pozos seleccionados para evitar pérdidas de presión en las líneas de transferencia.
- Utilizar el programa QRod para el diseño del equipo de Bombeo Mecánico.

#### BIBLIOGRAFÍA.

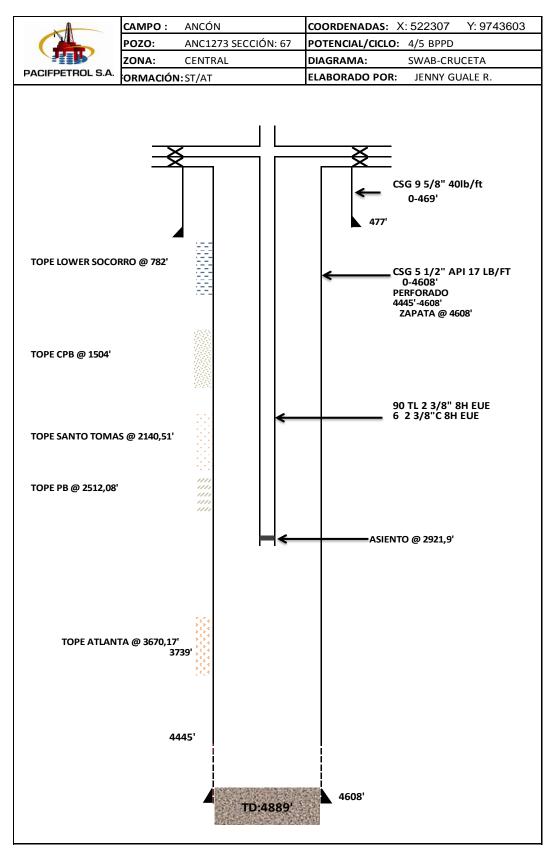
- Diseño de instalaciones de levantamiento artificial por bombeo mecánico
   PDVSA CIE Centro Internacional de Educación y Desarrollo (CIED).
   Código: © Primera
- EZEQUIEL ANDER-EGG. Grupo Editorial Lumen. Buenos. Métodos y Técnicas de Investigación Social III. Cómo Organizar Un Trabajo De Investigación.
- FREDDY HUMBERTO ESCOBAR MACUALO PhD. "Fundamentos de Ingeniería de yacimiento". Editorial Universisad Surcolombiana, Primera edición.
- Editor-in-Chief HOWARD B. BRADLEY –Professional /Technical Training Consultant "Petroleum Engineering Handbook "–Vol. IV /Society of Petroleum Engineers.ISN I-55563-010-3.año 1987.
- JOE CLEGG- J.R. BLANN, "Exploration & producción departament American Petroleum Institute" Third edition, 1994.
- JUAN A. ROSBACO, "Evaluación de proyectos: Teoría general y su aplicación a la explotación de hidrocarburos" Segunda edición Buenos Aires: EUDEBA, 1988.
- KERMIT E. BROWN, "The Technology of Articial Lift" Methods. Volumen 2<sup>a</sup>, The university of Tulsa. 1980
- KLEBER H. QUIROGA, "Pruebas de Reacondicionamientos de pozos petroliferos" Quito-1991.


- MARCELO ARTIGAS, Programa de Fortalecimiento de escuelas técnicas, "Exploración y producción de petróleo: Bombeo Mecánico", (2010). 1<sup>era</sup> Edición.
- PATRICIO MALONE, FERNANDO FANTIN, FERNANDO TUERO.

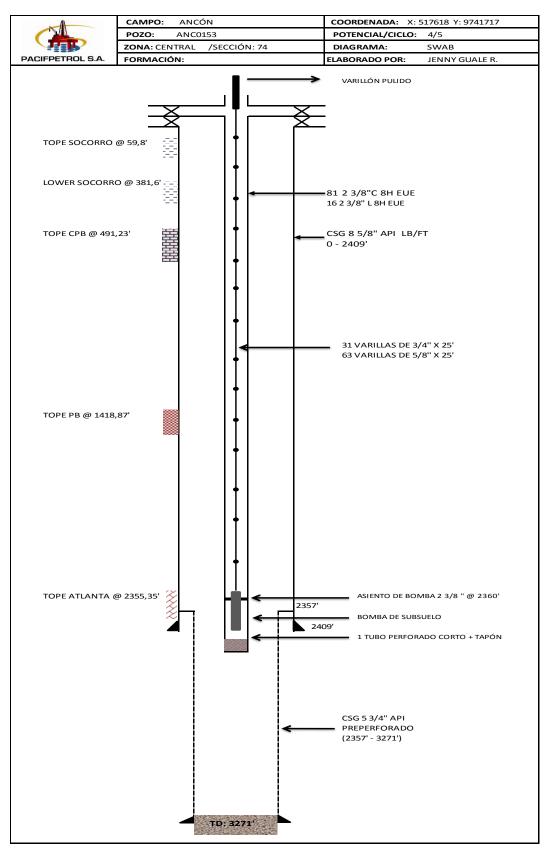
  "Informe Geológico y de reservorios del Campo Ancón".
- Pan American Energy Unidad de Gestión Golfo San José "Manual de Produción", Escuela de Petróleo de la Patagonea. 2002.
- Weatherford Sucker Rods. Choices in technology www.weatherford.com
- CPTDC China Petroleum Technology & Development Corporetion A
   CNPC. Comprehensive Catalog of Chinese Petroleum Material And
   Equipment.2008-2010.



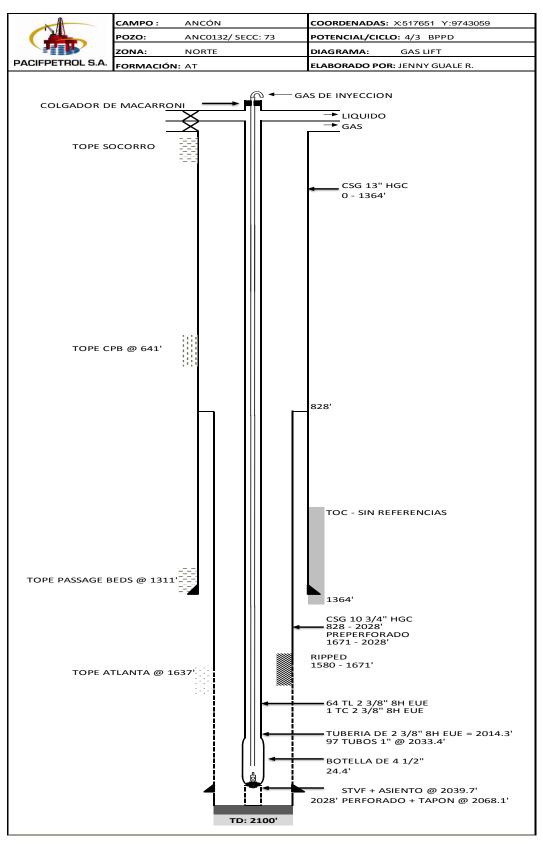

# ANEXO I DIAGRAMA DE COMPLETACIÓN DE LOS SISTEMA DE LEVANTAMIENTO ARTIFICIAL DEL BLOQUE 2.


ANEXO 1.1
DIAGRAMA DE COMPLETACIÓN DE HERRAMIENTA LOCAL.




# ANEXO 1.2 DIAGRAMA DE COMPLETACIÓN DE SWAB O PISTONEO. ANEXO 1.2.1 DIAGRAMA DE COMPLETACIÓN CON STADING

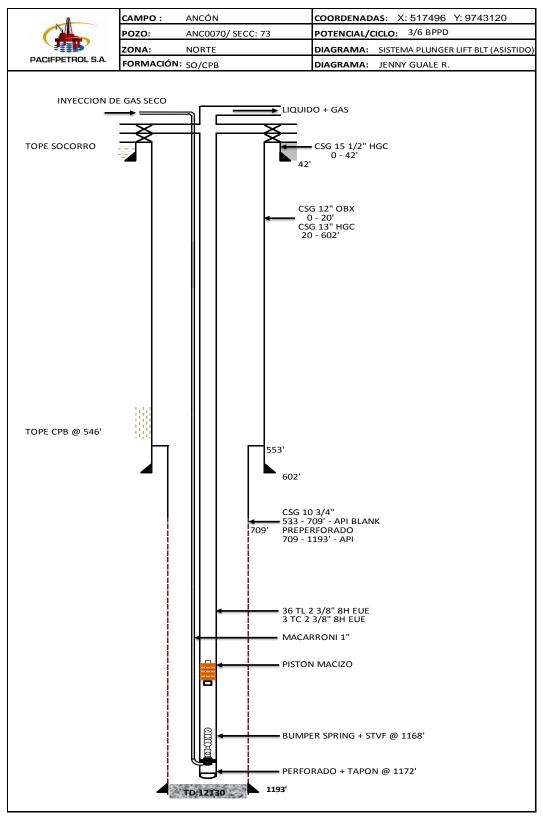



ANEXO 1.2.2
DIAGRAMA DE COMPLETACIÓN DE SWAB –CRUCETA



ANEXO 1.3
DIAGRAMA DE COMPLETACIÓN DE BOMBEO MECÁNICO




ANEXO 1.4
DIAGRAMA DE COMPLETACIÓN DE GAS LIFT



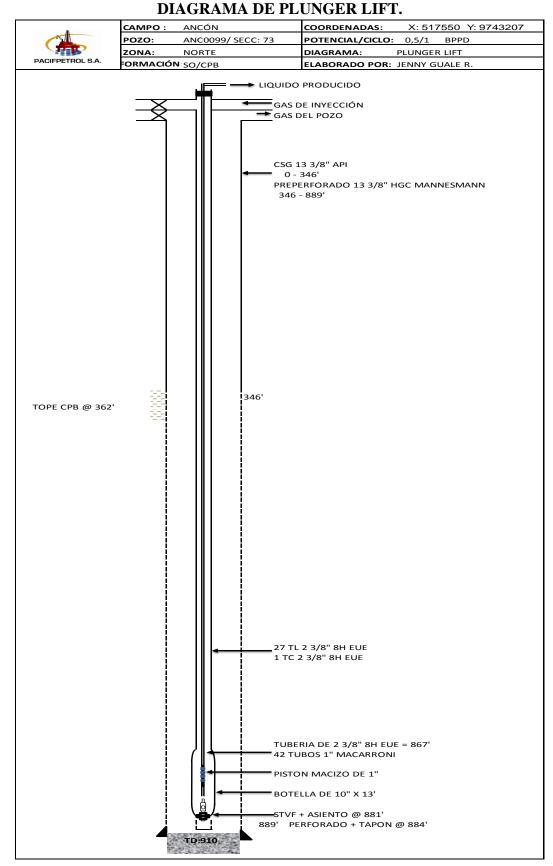
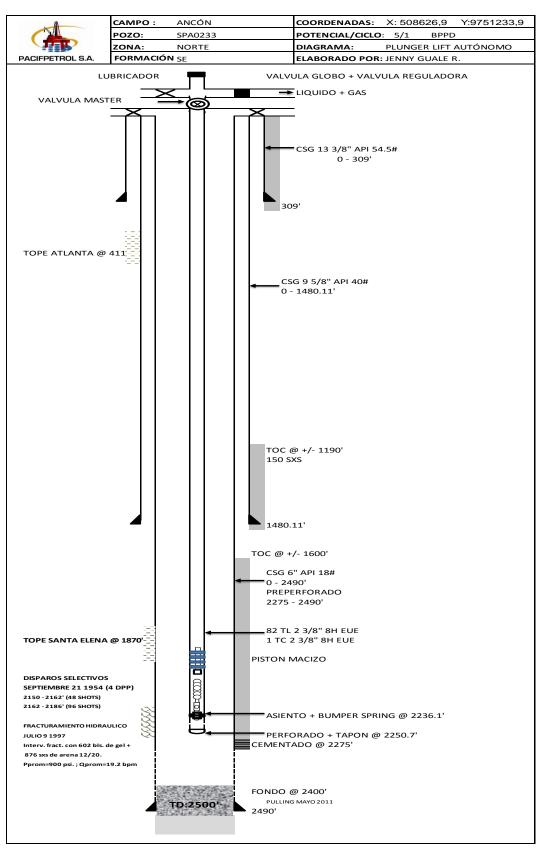

ANEXO 1.5

DIAGRAMA DE COMPLETACIÓN DE PLUNGER LIFT.


ANEXO 1.5.1 DIAGRAMA DE PLUNGER LIFT (ASISTIDO)



ANEXO 1.5.2



ANEXO 1.5.3 DIAGRAMA DE PLUNGER LIFT AUTÓNOMO



# ANEXO II. PLANILLAS DE DETALLES Y CARACTERÍSTICAS DEL EQUIPO PARA CAMBIO DE SISTEMA

ANEXO 2.1
PLANILLA DEL EQUIPO DE SUPERFICIE DEL BALANCÍN PORTÁTIL
Y CARACTERÍTICAS.



### PLANILLA DE EQUIPO DE SUPERFICIE

| DESCRIPCIÓN               | UNIDAD | PRECIO<br>UNITARIO | CANTIDAD | PRECIO<br>TOTAL | FUENTE DE<br>Información   |  |  |  |  |  |
|---------------------------|--------|--------------------|----------|-----------------|----------------------------|--|--|--|--|--|
| EQUIPO DE SUPERFICIE      |        |                    |          |                 |                            |  |  |  |  |  |
| Balancin portatil         | und    | 23000              | 6        | 138000,00       | Mantenimiento              |  |  |  |  |  |
| Carreta de almacenamiento | und    | 10000              | 6        | 60000,00        | Mantenimiento              |  |  |  |  |  |
| Puente de producción      | und    | 700,35             | 36       | 25.212,69       | Mantenimiento              |  |  |  |  |  |
| Stuffing box              | und    | 600                | 36       | 21600,00        | Consulta de stok de bodega |  |  |  |  |  |
| Grampa                    | und    | 500                | 36       | 18.000,00       | Consulta de stok de bodega |  |  |  |  |  |
|                           |        |                    |          |                 |                            |  |  |  |  |  |
|                           |        |                    |          |                 | \$ 262.812,69              |  |  |  |  |  |

### CARACTERÍSTICAS

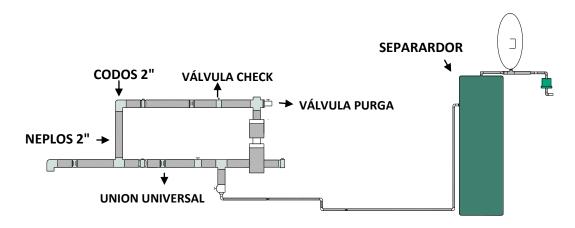
| Stuffing Box                                  |
|-----------------------------------------------|
| Compact – T Modelo SB 2" -7/8 X 1 1/4" 1 1/2" |
| Conexión if: 2 " 7/8 EUE M                    |
| Conexión sup: Tapa stuffing Box               |
| Presión máx:2000 psi                          |
| Temp máx.: 120°C                              |
| Vástago: 1 ¼"- 1 ½ "                          |



#### Copas de stuffing box

Goma de alta temperatura y cordón de cierre de 250 C grados.

Ahorra dinero y no remplaza el empaque con tanta frecuencia.


Previene los daños ambientales

Se adapta en todo de estilo de cono, la corona y tipo X de prensaestopas.

Ahorra cambios en la barra pulida debido al desgaste.



#### PUENTE DE PRODUCCIÓN



Elaborado por: Jenny Guale R./ AUTOCAD

### PLANILLA DE PUENTE DE PRODUCCIÓN

| ITEM | CÓDIGO   | unidad    | DESCRIPCIÓN                                           | Precio     | Cantidad | Precio | Fuente de                  |
|------|----------|-----------|-------------------------------------------------------|------------|----------|--------|----------------------------|
|      | 552.55   | de medida |                                                       | Unitario   | Estimada | Total  | Información                |
| 1    | B0012676 | und       | Valve check 2" , tipe y THRD 200 wog( red white- toyo | 50         | 1        | 50,00  |                            |
| 1 1  | D0012070 | unu       | 200 wg)                                               | 30         | _        | 30,00  | Consulta de stok de bodega |
| 2    | P0000935 | und       | Válvula de bola 2" roscada de bronce cromado, 150 PSI | 77,28      | 4        | 309,12 | Consulta de stok de bodega |
| 3    |          | und       | Valve ball 1/2", 1440 MIN CWP, CS Body, THR`D Full    |            |          |        |                            |
|      | P0002425 |           | Port, Solid 316SS Ball&Stem, Levere                   | 90         | 1        | 90,00  | Consulta de stok de bodega |
|      |          |           |                                                       |            |          |        |                            |
| 4    | B0011449 | und       | Unión universal 2" 150psi A/C                         | 8,24       | 3        | 24,72  | Consulta de stok de bodega |
| 5    | P0000719 | und       | tee 2" 11H                                            | 8,00       | 1        | 8,00   | Consulta de stok de bodega |
| 6    | B0011413 | und       | TEE: 2" 8H, 150LBS, ACERO AL CARBONO                  | 4,87       | 1        | 4,87   | Consulta de stok de bodega |
| 7    | P0000719 | und       | codo 90° de 2"                                        | 8,00       | 2        | 16,00  | Consulta de stok de bodega |
| 8    | B0011410 | und       | Bushing 1"-1/2" ACERO/NEGRO                           | 0,75       | 1        | 0,75   | Consulta de stok de bodega |
| 9    |          | m         | tubo de 2"                                            | 7,25       | 2,33     | 16,89  | Consulta de stok de bodega |
| 10   |          | horas     | mano de obra                                          | 10         | 18       | 180    | Consulta de stok de bodega |
|      |          |           |                                                       |            |          |        | 700,35                     |
|      |          | ·         | COSTO TOTAL DE PUENTE DE PRODU                        | CCION PARA | 36       | POZOS  | 25.212,6                   |

#### **CARACTERÍSTICAS**

# Válvula de retención Connection forma:Flange Standard: ISO, CE, API, ASME

Material: cast Steel Estructura: check

Pressure rating class: 150lbs 1500 lbs



### **ANEXO 2.2** PLANILLA DE EQUIPO DE FONDO Y CARACTERÍSTICAS

| DESCRIPCIÓN                                        | UNIDAD | PRECIO<br>UNITARIO | CANTIDAD  | PRECIO<br>TOTAL | FUENTE DE<br>Información   |  |  |  |  |  |  |
|----------------------------------------------------|--------|--------------------|-----------|-----------------|----------------------------|--|--|--|--|--|--|
| EQUIPO DE FONDO                                    |        |                    |           |                 |                            |  |  |  |  |  |  |
| Asiento 2 3/8", 8RD, EUE,bomba de subsuelo.        | und    | 121,67             | 36        | 4.380,12        | Consulta de stok de bodega |  |  |  |  |  |  |
| Tub perforado + tapón 2 3/8" x 8H                  | und    | 98,72              | 36        | 3.553,92        | Consulta de stok de bodega |  |  |  |  |  |  |
| bomba de 8                                         | und    | 2032,39            | 36        | 73166,04        | Consulta de stok de bodega |  |  |  |  |  |  |
| varillas de subsuelo 5/8"x25' A/C                  | ft     | 3                  | 61763,280 | 185.289,84      | Consulta de stok de bodega |  |  |  |  |  |  |
| varillas de subsuelo 3/4"x25' A/C                  | ft     | 3,2                | 30420,72  | 97.346,30       | Consulta de stok de bodega |  |  |  |  |  |  |
| neplo de varillas; 3/4"x10' Lng. ;acero al carbono | und    | 115,72             | 36        | 4.165,92        | Consulta de stok de bodega |  |  |  |  |  |  |
| varillón pulido 1 1/4" x 3/4x                      | und    | 192,6              | 36        | 6.933,60        | Consulta de stok de bodega |  |  |  |  |  |  |
|                                                    |        |                    |           | -               | \$ 374.835.74              |  |  |  |  |  |  |

### CARACTERÍSTICAS DEL EQUIPO DE SUBSUELO

#### Bomba RWAC

La bomba más utilizada en el Campo es RWAC Se les usa para pozos con arena, pozos gaseosos.

R: tipo de bomba insertable W: tipo de barril de pared fina

A: anclaje superior C: tipo de copas.



#### Varillas de subsuelo ¾" y 5/8"

El grado de varillas de bombeo (Sucker rod) utilizadas en el Campo es; grade rods D; son para cargas pesadas en pozos no corrosivos o inhibido eficazmente AISI 4142 cromo-molibdeno de aleación de acero



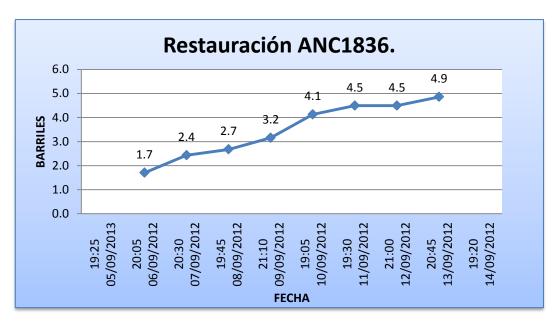
| Grado | Composición química       | Resistencia a la rotura tracción |              |  |  |  |
|-------|---------------------------|----------------------------------|--------------|--|--|--|
|       | Composition quinnea       |                                  | Máximo (psi) |  |  |  |
| D     | Acero al carbono o aleado | 115000                           | 140000       |  |  |  |

#### Diámetro de las varillas

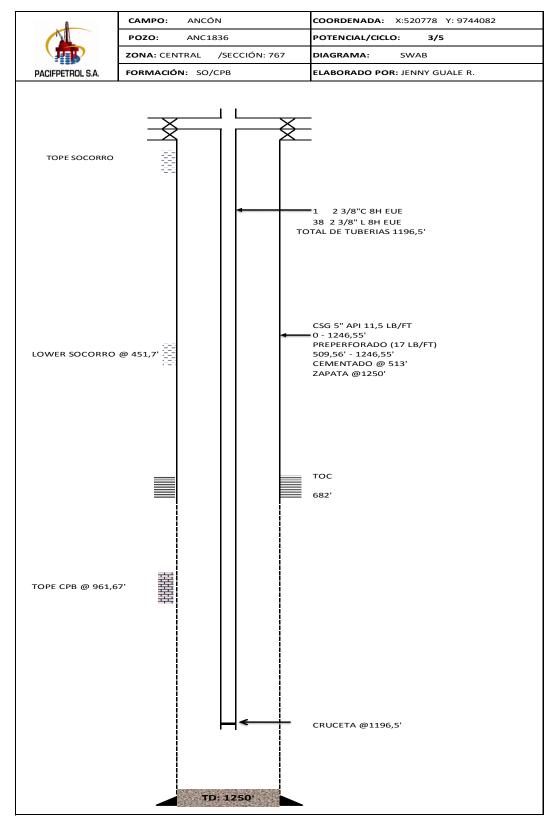
| Diámetro | Peso (lbs/pie) | Cuerpo                 | Pin                   | Relación |
|----------|----------------|------------------------|-----------------------|----------|
| 5/8"     | 1.135          | 197.83 mm <sup>2</sup> | 316.20mm <sup>2</sup> | 1.60     |
| 3/4"     | 1.634          | 284.88mm <sup>2</sup>  | 423.98mm <sup>2</sup> | 1.49     |

#### Planilla de varillas de subsuelo

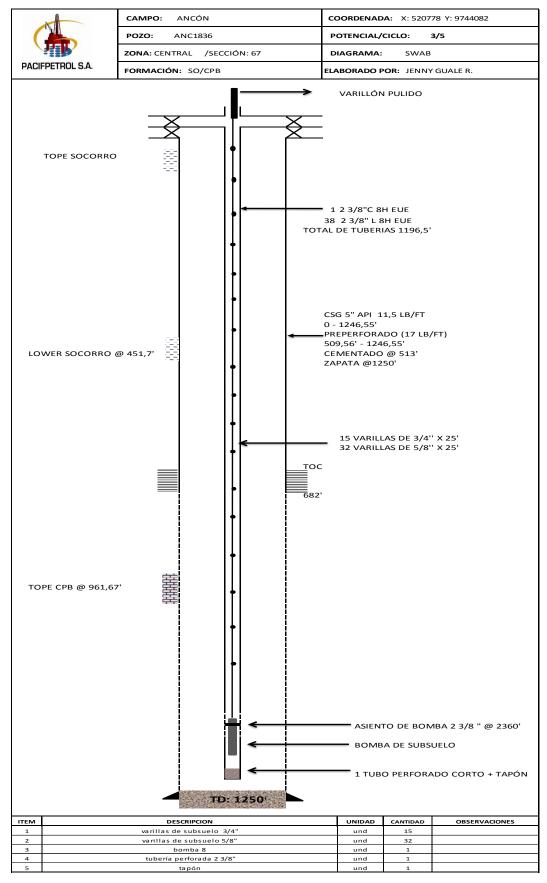
| POZO    | PROF D INST | CAP  | NL   | FT - NIVEL D | profundidad    | PRF DE NIVEL     | VARILLAS 3/4" | VARILLAS 5/8" | FT               | FT            |
|---------|-------------|------|------|--------------|----------------|------------------|---------------|---------------|------------------|---------------|
| PUZU    | actual      | CAP  | NL   | FLUIDO       | de inst futura | INST DE VARILLAS | VARILLAS 3/4  | VAKILLAS 5/8  | VARILLAS DE 3/4" | VARILLAS 5/8" |
| ANC0655 | 2240        | 2240 | 2140 | 100          | 2264,5         | 2240             | 29,568        | 60,032        | 739,2            | 1500,8        |
| ANC1256 | 2595        | 2595 | 2450 | 145          | 2619,5         | 2595             | 34,254        | 69,546        | 856,35           | 1738,65       |
| ANC1552 | 1640        | 1640 | 1370 | 270          | 1664,5         | 1640             | 21,648        | 43,952        | 541,2            | 1098,8        |
| ANC0084 | 1770        | 1770 | 1690 | 80           | 1794,5         | 1770             | 23,364        | 47,436        | 584,1            | 1185,9        |
| ANC0120 | 1890        | 1870 | 1660 | 230          | 1914,5         | 1890             | 24,948        | 50,652        | 623,7            | 1266,3        |
| ANC0153 | 2357        | 2300 | 2255 | 102          | 2381,5         | 2357             | 31,1124       | 63,1676       | 777,81           | 1579,19       |
| ANC0171 | 2218        | 2213 | 2123 | 95           | 2242,5         | 2218             | 29,2776       | 59,4424       | 731,94           | 1486,06       |
| ANC0175 | 2370        | 2370 | 2320 | 50           | 2394,5         | 2370             | 31,284        | 63,516        | 782,1            | 1587,9        |
| ANC1273 | 2921        | 2921 | 2821 | 100          | 2945,5         | 2921             | 38,5572       | 78,2828       | 963,93           | 1957,07       |
| ANC1555 | 1540        | 1540 | 1450 | 90           | 1564,5         | 1540             | 20,328        | 41,272        | 508,2            | 1031,8        |
| ANC1836 | 1200        | 1170 | 970  | 230          | 1224,5         | 1200             | 15,84         | 32,16         | 396              | 804           |
| ANC1266 | 3775        | 3775 | 3575 | 200          | 3799,5         | 3775             | 49,83         | 101,17        | 1245,75          | 2529,25       |
| ANC1295 | 3109        | 3050 | 2900 | 209          | 3133,5         | 3109             | 41,0388       | 83,3212       | 1025,97          | 2083,03       |
| ANC1288 | 3684        | 3684 | 3384 | 300          | 3708,5         | 3684             | 48,6288       | 98,7312       | 1215,72          | 2468,28       |
| ANC0173 | 2954        | 2954 | 2794 | 160          | 2978,5         | 2954             | 38,9928       | 79,1672       | 974,82           | 1979,18       |
| TIG0048 | 2903        | 2903 | 2858 | 45           | 2927,5         | 2903             | 38,3196       | 77,8004       | 957,99           | 1945,01       |
| ANC0796 | 3887        | 3807 | 3657 | 230          | 3911,5         | 3887             | 51,3084       | 104,1716      | 1282,71          | 2604,29       |
| TIG0030 | 2145        | 1920 | 1880 | 265          | 2169,5         | 2145             | 28,314        | 57,486        | 707,85           | 1437,15       |
| ANC0558 | 3915        | 3685 | 3535 | 380          | 3939,5         | 3915             | 51,678        | 104,922       | 1291,95          | 2623,05       |
| ANC1276 | 2335        | 2335 | 2260 | 75           | 2359,5         | 2335             | 30,822        | 62,578        | 770,55           | 1564,45       |
| TIG0012 | 3233        | 3223 | 3118 | 115          | 3257,5         | 3233             | 42,6756       | 86,6444       | 1066,89          | 2166,11       |
| TIG0025 | 2503        | 2503 | 2278 | 225          | 2527,5         | 2503             | 33,0396       | 67,0804       | 825,99           | 1677,01       |
| -       | 2500        | 2500 | 2450 | 50           | 2524,5         | 2500             | 33            | 67            | 825              | 1675          |
| -       | 2500        | 2500 | 2450 | 50           | 2524,5         | 2500             | 33            | 67            | 825              | 1675          |
| -       | 2500        | 2500 | -    | -            | 2524,5         | 2500             | 33            | 67            | 825              | 1675          |
| -       | 2500        | 2500 | -    | -            | 2524,5         | 2500             | 33            | 67            | 825              | 1675          |
| -       | 2500        | 2500 | -    | -            | 2524,5         | 2500             | 33            | 67            | 825              | 1675          |
| -       | 2500        | 2500 | -    | -            | 2524,5         | 2500             | 33            | 67            | 825              | 1675          |
| -       | 2500        | 2500 | -    | -            | 2524,5         | 2500             | 33            | 67            | 825              | 1675          |
| -       | 2500        | 2500 | -    | -            | 2524,5         | 2500             | 33            | 67            | 825              | 1675          |
| -       | 2500        | 2500 | -    | -            | 2524,5         | 2500             | 33            | 67            | 825              | 1675          |
| -       | 2500        | 2500 | -    | -            | 2524,5         | 2500             | 33            | 67            | 825              | 1675          |
| -       | 2500        | 2500 | -    | -            | 2524,5         | 2500             | 33            | 67            | 825              | 1675          |
| -       | 2500        | 2500 | -    | -            | 2524,5         | 2500             | 33            | 67            | 825              | 1675          |
| -       | 2500        | 2500 | -    | -            | 2524,5         | 2500             | 33            | 67            | 825              | 1675          |
| -       | 2500        | 2500 | -    | -            | 2524,5         | 2500             | 33            | 67            | 825              | 1675          |
|         |             |      |      |              |                |                  | 1216,8288     | 2470,5312     | 30420,72         | 61763,28      |


**Nota:** Para realizar el cálculo de las varillas el Campo Ancón considera que el porcentaje de las varillas de 5/8" es 67%, y las varillas de 3/4" es 33%.

# ANEXO III MODELO TIPO PARA CAMBIO DE SISTEMA


ANEXO 3.1 RESULTADOS DE UN POZO CANDIDATO RESTAURACIÓN DE NIVEL DEL POZO ANC1836

|            |       |                 | Al       | NC18  | 36 (3 | 3/5)              |     |         |                                                       |
|------------|-------|-----------------|----------|-------|-------|-------------------|-----|---------|-------------------------------------------------------|
|            |       | DÍAS DESPUÉS DE | Φ CASING | NIVEL | CAP   | Prof. Instalación | BLS | BLS     |                                                       |
| FECHA      | HORA  | INTERVENCIÓN    |          |       |       |                   | OIL | AGUA    | COMENTARIO                                            |
|            |       |                 |          |       |       |                   | 0.2 | 71.0071 |                                                       |
| 06/09/2012 | 20:05 | 1               | 5        | 1130  | 1200  | 1200              | 1,7 | 0,0     |                                                       |
| 07/09/2012 | 20:30 | 2               | 5        | 1100  | 1200  | 1200              | 2,4 | 0,0     |                                                       |
| 08/09/2012 | 19:45 | 3               | 5        | 1090  | 1200  | 1200              | 2,7 | 0,0     | el último de dia de la                                |
| 09/09/2012 | 21:10 | 4               | 5        | 1070  | 1200  | 1200              | 3,2 | 0,0     | restauración se midió de<br>nivel 130', csg=5", con 5 |
| 10/09/2012 | 19:05 | 5               | 5        | 1030  | 1200  | 1200              | 4,1 | 0,0     | bls de petróleo y 1/2 de                              |
| 11/09/2012 | 19:30 | 6               | 5        | 1015  | 1200  | 1200              | 4,5 | 0,0     | agua.                                                 |
| 12/09/2012 | 21:00 | 7               | 5        | 990   | 1175  | 1200              | 4,5 | 0,6     |                                                       |
| 13/09/2012 | 20:45 | 8               | 5        | 970   | 1170  | 1200              | 4,9 | 0,7     |                                                       |


#### **CURVA DE RESTAURACIÓN**

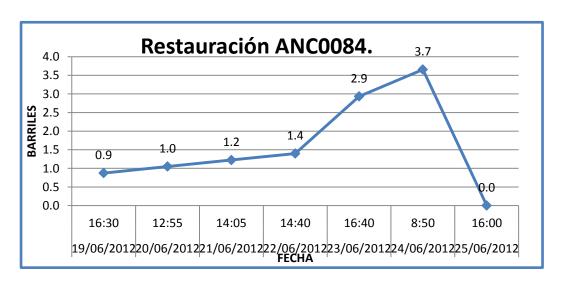


ANEXO 3.2
DIAGRAMA DE COMPLETACIÓN ACTUAL Y FUTURA
DIAGRAMA DE COMPLETACIÓN ACTUAL DEL POZO ANC1836



#### DIAGRAMA DE COMPLETACIÓN FUTURA DE POZO ANC1836




# ANEXO IV RESULTADOS DE RESTAURACIONES DE NIVEL

POZO: ANC0084

|            | ANC0084 (3/7) |                    |            |            |       |      |                   |     |  |  |  |  |  |
|------------|---------------|--------------------|------------|------------|-------|------|-------------------|-----|--|--|--|--|--|
| FECHA      | HORA          | DÍAS DESPUÉS<br>DE | Φ CASING 1 | Φ CASING 2 | NIVEL | CAP  | Prof. Instalación | BLS |  |  |  |  |  |
|            | ECHA - HORA   | INTERVENCIÓN       | in         | in         | ft    | ft   | ft                | 520 |  |  |  |  |  |
| 19/06/2012 | 16:30         | 1                  | 6          | 8,625      | 1745  | 1770 | 1770              | 0,9 |  |  |  |  |  |
| 20/06/2012 | 12:55         | 2                  | 6          | 8,625      | 1740  | 1770 | 1770              | 1,0 |  |  |  |  |  |
| 21/06/2012 | 14:05         | 3                  | 6          | 8,625      | 1735  | 1770 | 1770              | 1,2 |  |  |  |  |  |
| 22/06/2012 | 14:40         | 4                  | 6          | 8,625      | 1730  | 1770 | 1770              | 1,4 |  |  |  |  |  |
| 23/06/2012 | 16:40         | 5                  | 6          | 8,625      | 1700  | 1770 | 1770              | 2,9 |  |  |  |  |  |
| 24/06/2012 | 8:50          | 6                  | 6          | 8,625      | 1690  | 1770 | 1770              | 3,7 |  |  |  |  |  |

El pozo tiene CSG de 8 5/8" de 0 -1778', y de 1713'-2290' tiene CSG de 6". Se midió 80' = 3.7 bls de petróleo con un ciclo de trabajo de 6 días.

#### Curva de restauración



POZO: ANC0120

|            | ANC0120 (4/4) |                 |            |            |       |      |                   |      |  |  |  |  |  |
|------------|---------------|-----------------|------------|------------|-------|------|-------------------|------|--|--|--|--|--|
| FECHA      | HORA          | DÍAS DESPUÉS DE | Φ CASING 1 | Φ CASING 2 | NIVEL | CAP  | Prof. Instalación | BI S |  |  |  |  |  |
| LONA       | HORA          | INTERVENCIÓN    | in         | in         | ft    | ft   | ft                | DLO  |  |  |  |  |  |
| 11/06/2012 | 21:00         | 1               | 8,625      | 5,75       | 1800  | 1870 | 1890              | 5,1  |  |  |  |  |  |
| 12/06/2012 | 21:00         | 2               | 8,625      | 5,75       | 1750  | 1870 | 1890              | 6,7  |  |  |  |  |  |
| 13/06/2012 | 8:40          | 3               | 8,625      | 5,75       | 1720  | 1870 | 1890              | 7,6  |  |  |  |  |  |
| 14/06/2012 | 20:10         | 4               | 8,625      | 5,75       | 1690  | 1870 | 1890              | 8,6  |  |  |  |  |  |
| 15/06/2012 | 19:57         | 5               | 8,625      | 5,75       | 1670  | 1870 | 1890              | 9,2  |  |  |  |  |  |
| 16/06/2012 | 19:40         | 6               | 8,625      | 5,75       | 1660  | 1870 | 1890              | 9,6  |  |  |  |  |  |
| 17/06/2012 | 18:05         | 7               | 8,625      | 5,75       | 1660  | 1870 | 1890              | 9,6  |  |  |  |  |  |

Su máximo nivel es 210' = 9.6 bls. Normalmente, se recupera 4 bls cada 4 días pero para esta restauración se alargo su ciclo de trabajo a 7 días y acumuló 9 bls.

#### Curva de restauración



#### POZO: ANC0153

|            | ANC0153 (4/5) |                 |            |       |      |                   |      |  |  |  |  |  |  |
|------------|---------------|-----------------|------------|-------|------|-------------------|------|--|--|--|--|--|--|
| FECHA      | HORA          | DÍAS DESPUÉS DE | Φ CASING 1 | NIVEL | CAP  | Prof. Instalación | DI C |  |  |  |  |  |  |
| FECHA      | пока          | INTERVENCIÓN    | in         | ft    | ft   | ft                | BLS  |  |  |  |  |  |  |
| 11/06/2012 | 23:45         | 1               | 8,625      | 2300  | 2300 | 2357              | 0,0  |  |  |  |  |  |  |
| 12/06/2012 | 20:40         | 2               | 8,625      | 2290  | 2300 | 2357              | 0,7  |  |  |  |  |  |  |
| 13/06/2012 | 10:34         | 3               | 8,625      | 2280  | 2300 | 2357              | 1,4  |  |  |  |  |  |  |
| 14/06/2012 | 19:19         | 4               | 8,625      | 2270  | 2300 | 2357              | 2,2  |  |  |  |  |  |  |
| 15/06/2012 | 20:21         | 5               | 8,625      | 2255  | 2300 | 2357              | 3,3  |  |  |  |  |  |  |

El nivel se encuentra en csg 8 5/8" desde 0-2409' alcanzando 45' de nivel de fluido en este caso se recupero 3 bls de petróleo.

#### Curva de restauración



**POZO: ANC0173** 

|            | ANC0173 (8/4) |                 |          |       |      |                   |         |      |  |  |  |  |
|------------|---------------|-----------------|----------|-------|------|-------------------|---------|------|--|--|--|--|
| FECHA      | HORA          | DÍAS DESPUÉS DE | Φ CASING | NIVEL | CAP  | Prof. Instalación | BLS OIL | BLS  |  |  |  |  |
| ILONA      |               | INTERVENCIÓN    | in       | ft    | ft   | ft                | BLO OIL | AGUA |  |  |  |  |
| 03/10/2012 | 4:00          | 1               | 5,758    | 2949  | 2954 | 2954              | 0,2     | 0,0  |  |  |  |  |
| 04/10/2012 | 2:20          | 2               | 5,758    | 2944  | 2954 | 2954              | 0,3     | 0,0  |  |  |  |  |
| 05/10/2012 | 0:35          | 3               | 5,758    | 2834  | 2954 | 2954              | 3,9     | 0,0  |  |  |  |  |
| 06/10/2012 |               | 4               | 5,758    | 2794  | 2954 | 2954              | 5,2     | 0,0  |  |  |  |  |

El ciclo de trabajo de restauración de nivel de este pozo fue por 3 días. En el cual se recuperó 5 barriles, alcanzando un nivel del fluido a 160'.

#### Curva de restauración



POZO: ANC0175

|            | ANC0175 (4.5/5) |                 |          |       |      |                   |     |  |  |  |  |  |
|------------|-----------------|-----------------|----------|-------|------|-------------------|-----|--|--|--|--|--|
| FECHA      | HORA            | DÍAS DESPUÉS DE | Φ CASING | NIVEL | CAP  | Prof. Instalación | BLS |  |  |  |  |  |
| FECHA      | пока            | INTERVENCIÓN    | in       | ft    | ft   | ft                | BLS |  |  |  |  |  |
| 24/07/2012 | 20:09           | 1               | 8,625    | 2370  | 2370 | 2370              | 0,0 |  |  |  |  |  |
| 25/07/2012 | 19:10           | 2               | 8,625    | 2340  | 2370 | 2370              | 2,2 |  |  |  |  |  |
| 26/07/2012 | 20:45           | 3               | 8,625    | 2330  | 2370 | 2370              | 2,9 |  |  |  |  |  |
| 27/07/2012 | 19:35           | 4               | 8,625    | 2320  | 2370 | 2370              | 3,6 |  |  |  |  |  |
| 28/07/2012 | 21:05           | 5               | 8,625    | 2320  | 2370 | 2370              | 3,6 |  |  |  |  |  |
| 28/07/2012 | 20:20           | 0               | 8,625    | 2370  | 2370 | 2370              | 0,0 |  |  |  |  |  |

El ciclo de esta restauración de este pozo fue por 5 días. En el cual se recuperó 3.6 barriles, alcanzando un nivel estatico del fluido de 50'

#### Curva de restauración.

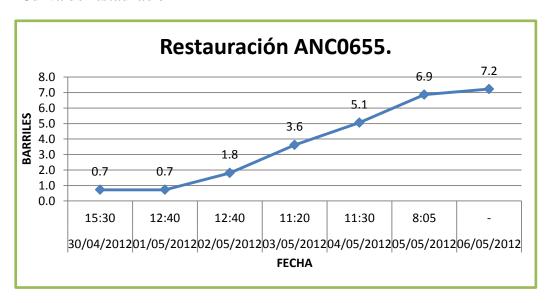


#### POZO:ANC0558

|            | ANC0558 (10/4) |                 |                |      |      |                   |         |          |  |  |  |  |
|------------|----------------|-----------------|----------------|------|------|-------------------|---------|----------|--|--|--|--|
| FECHA      | HORA           | DÍAS DESPUÉS DE | Φ CASING NIVEL |      | CAP  | Prof. Instalación | BLS OIL | BLS AGUA |  |  |  |  |
| FEUTIA     | пока           | INTERVENCIÓN    | in             | ft   | ft   | ft                | BL3 UIL | DL3 AGUA |  |  |  |  |
| 07/12/2012 | 0:30           | 1               | 7              | 3615 | 3655 | 3915              | 1,9     | 12,4     |  |  |  |  |
| 08/12/2012 | 1:15           | 2               | 7              | 3610 | 3655 | 3915              | 2,1     | 12,4     |  |  |  |  |
| 09/12/2012 | 11:45          | 3               | 7              | 3545 | 3655 | 3915              | 5,2     | 12,4     |  |  |  |  |
| 10/12/2012 | 11:20          | 4               | 7              | 3535 | 3685 | 3915              | 7,1     | 10,9     |  |  |  |  |

El ciclo de trabajo del pozo fue de 4 días, en la restauración se recupero 7 bls de petróleo.

#### Curva de restauración




POZO: ANC0655

|            |       | ANC06           | 655 (4/4)            |      |      |                      |     |
|------------|-------|-----------------|----------------------|------|------|----------------------|-----|
| FECHA      | HORA  | DÍAS DESPUÉS DE | PUÉS DE   Ф CASING I |      | CAP  | AP Prof. Instalación |     |
| FECHA      |       | INTERVENCIÓN    | in                   | ft   | ft   | ft                   | BLS |
| 30/04/2012 | 15:30 | 1               | 8,625                | 2230 | 2240 | 2240                 | 0,7 |
| 01/05/2012 | 12:40 | 2               | 8,625                | 2230 | 2240 | 2240                 | 0,7 |
| 02/05/2012 | 12:40 | 3               | 8,625                | 2215 | 2240 | 2240                 | 1,8 |
| 03/05/2012 | 11:20 | 4               | 8,625                | 2190 | 2240 | 2240                 | 3,6 |
| 04/05/2012 | 11:30 | 5               | 8,625                | 2170 | 2240 | 2240                 | 5,1 |
| 05/05/2012 | 8:05  | 6               | 8,625                | 2145 | 2240 | 2240                 | 6,9 |
| 06/05/2012 | 8:00  | 7               | 8,625                | 2140 | 2240 | 2240                 | 7,2 |

Para esta restauración se duplicó el ciclo de 4 a 8 días. Después de los 8 días, el pozo acumuló 7.2 bls,

#### Curva de restauración



POZO:ANC0796

|            | ANC0796(9/4) |                 |          |       |      |                   |         |          |  |  |  |
|------------|--------------|-----------------|----------|-------|------|-------------------|---------|----------|--|--|--|
| FECHA      | HORA         | DÍAS DESPUÉS DE | Φ CASING | NIVEL | CAP  | Prof. Instalación | BLS OIL | BLS AGUA |  |  |  |
| FLORIA     | HONA         | INTERVENCIÓN    | in       | ft    | ft   | ft                | DL3 OIL | DL3 AGUA |  |  |  |
| 23/10/2012 | 0:00         | 1               | 7        | 3787  | 3827 | 3887              | 1,9     | 2,9      |  |  |  |
| 24/10/2012 | 19:00        | 2               | 7        | 3727  | 3827 | 3887              | 4,8     | 2,9      |  |  |  |
| 25/10/2012 | 19:20        | 3               | 7        | 3657  | 3807 | 3887              | 7,1     | 3,8      |  |  |  |

El ciclo de trabajo de este pozo fue de 3 días como podemos observar en la tabla acumulo 7 barriles de petróleo.

#### Curva de restauración



POZO: ANC1256

|            | ANC1256 (3/3) |                 |          |       |      |                   |     |  |  |  |  |  |
|------------|---------------|-----------------|----------|-------|------|-------------------|-----|--|--|--|--|--|
| FECHA      | HORA          | DÍAS DESPUÉS DE | Φ CASING | NIVEL | CAP  | Prof. Instalación | BLS |  |  |  |  |  |
| FECHA      | HOKA          | INTERVENCIÓN    | in       | ft    | ft   | ft                | BLS |  |  |  |  |  |
| 30/04/2012 | 13:30         | 1               | 6        | 2595  | 2595 | 2595              | 0,0 |  |  |  |  |  |
| 01/05/2012 | 12:15         | 2               | 6        | 2540  | 2595 | 2595              | 1,9 |  |  |  |  |  |
| 02/05/2012 | 11:40         | 3               | 6        | 2520  | 2595 | 2595              | 2,6 |  |  |  |  |  |
| 03/05/2012 | 11:35         | 4               | 6        | 2490  | 2595 | 2595              | 3,7 |  |  |  |  |  |
| 04/05/2012 | 11:10         | 5               | 6        | 2450  | 2595 | 2595              | 5,1 |  |  |  |  |  |

Para la restauración se duplicó el ciclo de 3 a 6 días. Después de 5 días, el pozo acumuló 5 bls



POZO: ANC1266

|            | ANC1266 (3/3) |                 |          |       |      |                   |         |          |  |  |  |
|------------|---------------|-----------------|----------|-------|------|-------------------|---------|----------|--|--|--|
| FECHA      | HORA          | DÍAS DESPUÉS DE | Φ CASING | NIVEL | CAP  | Prof. Instalación | BLS OIL | BLS AGUA |  |  |  |
| FECHA      | пока          | INTERVENCIÓN    | in       | ft    | ft   | ft                | BL3 UIL | DLS AGUA |  |  |  |
| 23/08/2012 | 13:55         | 1               | 5,5      | 3605  | 3775 | 3775              | 5,0     | 0,0      |  |  |  |
| 24/08/2012 | 9:20          | 2               | 5,5      | 3575  | 3775 | 3775              | 5,9     | 0,0      |  |  |  |
| 25/08/2012 | 10:40         | 3               | 5,5      | 3575  | 3775 | 3775              | 5,9     | 0,0      |  |  |  |
| 26/08/2012 | 9:40          | 4               | 5,5      | 3575  | 3775 | 3775              | 5,9     | 0,0      |  |  |  |
| 27/08/2012 | 11:20         | 5               | 5,5      | 3575  | 3775 | 3775              | 5,9     | 0,0      |  |  |  |
| 28/08/2012 | 9:20          | 6               | 5,5      | 3575  | 3775 | 3775              | 5,9     | 0,0      |  |  |  |

Este pozo tiene un buen nivel de fluido de 200' aporta un buen volumen de bls .puede ser alpicable para BM.cuando intervino la unidad saco 4 bls 3 de petróleo y 1 agua

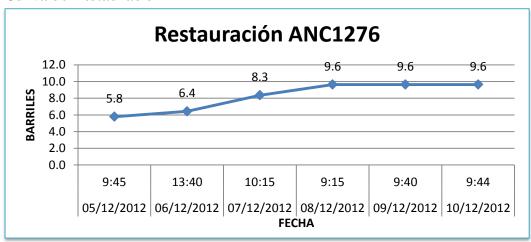


#### POZO:ANC1273

|            | ANC1273 (4/5) |                 |          |       |      |                   |     |  |  |  |  |
|------------|---------------|-----------------|----------|-------|------|-------------------|-----|--|--|--|--|
| FECHA      | HORA          | DÍAS DESPUÉS DE | Φ CASING | NIVEL | CAP  | Prof. Instalación | ые  |  |  |  |  |
| FECHA      | HUKA          | INTERVENCIÓN    | in       | ft    | ft   | ft                | BLS |  |  |  |  |
| 11/07/2012 | 22:35         | 1               | 5,5      | 2911  | 2921 | 2921              | 0,3 |  |  |  |  |
| 12/07/2012 | 22:35         | 2               | 5,5      | 2891  | 2921 | 2921              | 0,9 |  |  |  |  |
| 13/07/2012 | 19:20         | 3               | 5,5      | 2871  | 2921 | 2921              | 1,5 |  |  |  |  |
| 14/07/2012 | 19:01         | 4               | 5,5      | 2846  | 2921 | 2921              | 2,2 |  |  |  |  |
| 15/07/2012 | 20:00         | 5               | 5,5      | 2821  | 2921 | 2921              | 2,9 |  |  |  |  |

A los cinco días acumuló 100' = 2.9 bls, ese día lo intervino SW y reportó que recuperó 3 bls de petróleo. La curva de restauración de nivel indica que no ha llegado a su nivel máximo a los 5 días y que se podría extender su ciclo.

#### Curva de restauración

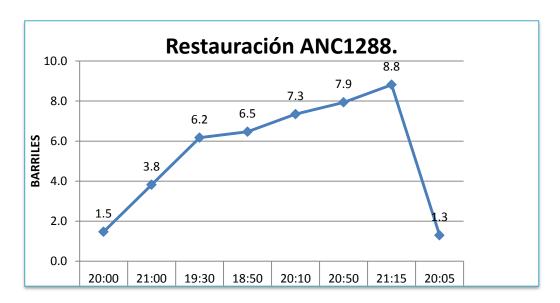



#### POZO:ANC1276

|            | ANC1276(3/4) |                 |          |       |      |                   |         |          |  |  |  |  |
|------------|--------------|-----------------|----------|-------|------|-------------------|---------|----------|--|--|--|--|
| FECHA      | HORA         | DÍAS DESPUÉS DE | Φ CASING | NIVEL | CAP  | Prof. Instalación | BLS OIL | BLS AGUA |  |  |  |  |
| FLOTIA     |              | INTERVENCIÓN    | in       | ft    | ft   | ft                | BL3 OIL | DL3 AGUA |  |  |  |  |
| 05/12/2012 | 9:45         | 1               | 11,5     | 2290  | 2335 | 2335              | 5,8     | 0,0      |  |  |  |  |
| 06/12/2012 | 13:40        | 2               | 11,5     | 2285  | 2335 | 2335              | 6,4     | 0,0      |  |  |  |  |
| 07/12/2012 | 10:15        | 3               | 11,5     | 2270  | 2335 | 2335              | 8,3     | 0,0      |  |  |  |  |
| 08/12/2012 | 9:15         | 4               | 11,5     | 2260  | 2335 | 2335              | 9,6     | 0,0      |  |  |  |  |
| 09/12/2012 | 9:40         | 5               | 11,5     | 2260  | 2335 | 2335              | 9,6     | 0,0      |  |  |  |  |
| 10/12/2012 | 9:44         | 6               | 11,5     | 2260  | 2335 | 2335              | 9,6     | 0,0      |  |  |  |  |
| 11/12/2012 | 8:00         | 7               | 11,5     | 2260  | 2335 | 2335              | 9,6     | 0,0      |  |  |  |  |

El pozo aporto 9.6 barriles de petróleo alcanzando un nivel de 75'

#### Curva de Restauración




#### POZO:ANC1288

|            | ANC1288 (6/8) |                 |          |       |      |                   |         |          |  |  |  |
|------------|---------------|-----------------|----------|-------|------|-------------------|---------|----------|--|--|--|
| FECHA      | HORA          | DÍAS DESPUÉS DE | Φ CASING | NIVEL | CAP  | Prof. Instalación | BLS OIL | BLS AGUA |  |  |  |
| FECHA      | ПОКА          | INTERVENCIÓN    | in       | ft    | ft   | ft                | BL3 OIL | BLS AGUA |  |  |  |
| 04/09/2012 | 20:00         | 1               | 5,5      | 3634  | 3684 | 3684              | 1,5     | 0,0      |  |  |  |
| 05/09/2012 |               | 2               | 5,5      | 3554  | 3684 | 3684              | 3,8     | 0,0      |  |  |  |
| 06/09/2012 |               | 3               | 5,5      | 3474  | 3684 | 3684              | 6,2     | 0,0      |  |  |  |
| 07/09/2012 |               | 4               | 5,5      | 3464  | 3684 | 3684              | 6,5     | 0,0      |  |  |  |
| 08/09/2012 |               | 5               | 5,5      | 3434  | 3684 | 3684              | 7,3     | 0,0      |  |  |  |
| 09/09/2012 |               | 6               | 5,5      | 3414  | 3684 | 3684              | 7,9     | 0,0      |  |  |  |
| 10/09/2012 | •             | 7               | 5,5      | 3384  | 3684 | 3684              | 8,8     | 0,0      |  |  |  |
| 11/09/2012 | •             | 8               | 5,5      | 3640  | 3684 | 3684              | 1,3     | 0,0      |  |  |  |

El ciclo de trabajo fue de 7 días el pozo alcanzo un nivel de 300' se recupero 8 bls de petróleo.

#### Curva de restauración.



#### POZO:ANC1552

|            | ANC1552 (6/3) |                 |          |       |      |                   |     |  |  |  |  |  |
|------------|---------------|-----------------|----------|-------|------|-------------------|-----|--|--|--|--|--|
| FECHA      | HORA          | DÍAS DESPUÉS DE | Φ CASING | NIVEL | CAP  | Prof. Instalación | BLS |  |  |  |  |  |
| FECHA      | пока          | INTERVENCIÓN    | in       | ft    | ft   | ft                | BLS |  |  |  |  |  |
| 30/04/2012 | 14:20         | 1               | 5        | 1600  | 1640 | 1640              | 1,0 |  |  |  |  |  |
| 01/05/2012 | 10:10         | 2               | 5        | 1570  | 1640 | 1640              | 1,7 |  |  |  |  |  |
| 02/05/2012 | 10:15         | 3               | 5        | 1560  | 1640 | 1640              | 1,9 |  |  |  |  |  |
| 03/05/2012 | 10:53         | 4               | 5        | 1440  | 1640 | 1640              | 4,9 |  |  |  |  |  |
| 04/05/2012 | 10:37         | 5               | 5        | 1370  | 1640 | 1640              | 6,6 |  |  |  |  |  |

Para la restauración se duplicó el ciclo de 3 a 6 días. Después de 5 días, el pozo acumuló 6 bls.La unidad de swab Reportó 6 bls.

#### Curva de Restauración

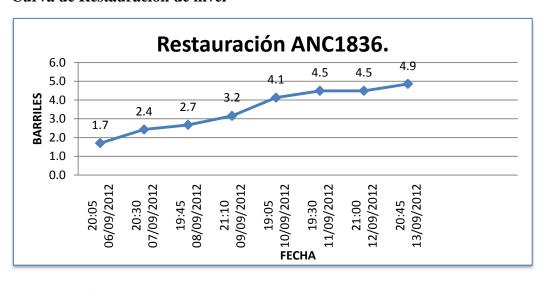


#### POZO:ANC1555

|            | ANC1555 (3/4) |                 |          |       |      |                   |     |  |  |  |  |  |
|------------|---------------|-----------------|----------|-------|------|-------------------|-----|--|--|--|--|--|
| FECHA      | HORA          | DÍAS DESPUÉS DE | Φ CASING | NIVEL | CAP  | Prof. Instalación | BLS |  |  |  |  |  |
| FECHA      | пока          | INTERVENCIÓN    | in       | ft    | ft   | ft                | BLS |  |  |  |  |  |
| 19/07/2012 | 0:10          | 1               | 5        | 1530  | 1540 | 1540              | 0,2 |  |  |  |  |  |
| 20/07/2012 | 23:30         | 2               | 5        | 1525  | 1540 | 1540              | 0,4 |  |  |  |  |  |
| 21/07/2012 | 23:53         | 3               | 5        | 1490  | 1540 | 1540              | 1,2 |  |  |  |  |  |
| 22/07/2012 | 23:20         | 4               | 5        | 1475  | 1540 | 1540              | 1,6 |  |  |  |  |  |
| 23/07/2012 | 23:10         | 5               | 5        | 1450  | 1540 | 1540              | 2,2 |  |  |  |  |  |
| 24/07/2012 | -             | 6               | 5        | 1450  | 1540 | 1540              | 2,2 |  |  |  |  |  |

Para la restauración se duplicó el ciclo de 4 a 8 días. Aunque se tiene solo lecturas sólo hasta e  $6^{\circ}$  día, se pudo ver que el pozo acumuló unos 90' = 2.2 bls. El pozo se intervino posteriormente recuperando 3 bls. El pozo no acumula.

#### Curva de Restauración de nivel




**POZO: ANC1836** 

|            |       |                 | ANC183   | 6 (3/ | 5)   |                   |     |      |
|------------|-------|-----------------|----------|-------|------|-------------------|-----|------|
|            |       | DÍAS DESPUÉS DE | Φ CASING | NIVEL | CAP  | Prof. Instalación | BLS | BLS  |
| FECHA      | HORA  | INTERVENCIÓN    |          |       |      |                   | OIL | AGUA |
|            |       |                 |          |       |      |                   |     |      |
| 06/09/2012 | 20:05 | 1               | 5        | 1130  | 1200 | 1200              | 1,7 | 0,0  |
| 07/09/2012 | 20:30 | 2               | 5        | 1100  | 1200 | 1200              | 2,4 | 0,0  |
| 08/09/2012 | 19:45 | 3               | 5        | 1090  | 1200 | 1200              | 2,7 | 0,0  |
| 09/09/2012 | 21:10 | 4               | 5        | 1070  | 1200 | 1200              | 3,2 | 0,0  |
| 10/09/2012 | 19:05 | 5               | 5        | 1030  | 1200 | 1200              | 4,1 | 0,0  |
| 11/09/2012 | 19:30 | 6               | 5        | 1015  | 1200 | 1200              | 4,5 | 0,0  |
| 12/09/2012 | 21:00 | 7               | 5        | 990   | 1175 | 1200              | 4,5 | 0,6  |
| 13/09/2012 | 20:45 | 8               | 5        | 970   | 1170 | 1200              | 4,9 | 0,7  |

El ciclo de resaturación se alargo a 8 días el último de dia de la restauración se midió de nivel 130', csg=5", con 5 bls de petróleo y 1/2 de agua.

#### Curva de Restauración de nivel



POZO: TIG0012

|            | TIG0012(3/2) |                 |          |       |      |                   |         |          |  |  |  |  |
|------------|--------------|-----------------|----------|-------|------|-------------------|---------|----------|--|--|--|--|
| FECHA      | HORA         | DÍAS DESPUÉS DE | Φ CASING | NIVEL | CAP  | Prof. Instalación | BLS OIL | BLS AGUA |  |  |  |  |
| FLORIA     | HORA         | INTERVENCIÓN    | in       | ft    | ft   | ft                | BL3 OIL | BL3 AGUA |  |  |  |  |
| 06/12/2012 | 23:00        | 1               | 8,625    | 3213  | 3233 | 3233              | 1,4     | 0,0      |  |  |  |  |
| 07/12/2012 | 22:15        | 2               | 8,625    | 3188  | 3233 | 3233              | 3,3     | 0,0      |  |  |  |  |
| 08/12/2012 | 0:40         | 3               | 8,625    | 3163  | 3223 | 3233              | 4,3     | 0,7      |  |  |  |  |
| 09/12/2012 | 22:40        | 4               | 8,625    | 3118  | 3223 | 3233              | 7,6     | 0,7      |  |  |  |  |

El pozo TIG0012 se realizo la restauración con ciclo de trabajo de 4 dias, el pozo recupero 7 barriles de petróleo y ½ de agua.

#### Curva de restauración de nivel.



POZO: TIG0025

|            | TIG0025 (4/2) |                 |          |       |      |                   |         |           |  |  |  |  |
|------------|---------------|-----------------|----------|-------|------|-------------------|---------|-----------|--|--|--|--|
| FECHA      | HORA          | DÍAS DESPUÉS DE | Φ CASING | NIVEL | CAP  | Prof. Instalación | BLS OIL | DI O AOUA |  |  |  |  |
| FEUTA      | ПОКА          | INTERVENCIÓN    | in       | ft    | ft   | ft                | DL3 OIL | BLS AGUA  |  |  |  |  |
| 04/12/2012 | 9:15          | 1               | 6,625    | 2378  | 2503 | 2503              | 5,3     | 0,0       |  |  |  |  |
| 05/12/2012 | 13:40         | 2               | 6,625    | 2303  | 2503 | 2503              | 8,5     | 0,0       |  |  |  |  |
| 06/12/2012 | 10.15         | 3               | 6,625    | 2278  | 2503 | 2503              | 9,6     | 0,0       |  |  |  |  |

Este pozo en 3 días de trabajo recuperó 9 barriles de petróleo con un nivel de 225' **Curva de restauración de nivel.** 



#### POZO:TIG0048

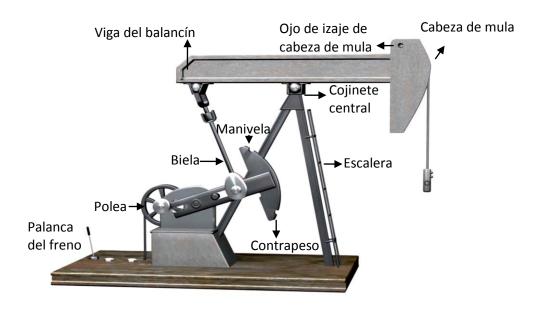
|            | TIG0048 (3/2) |                 |          |       |      |                   |         |          |  |  |  |
|------------|---------------|-----------------|----------|-------|------|-------------------|---------|----------|--|--|--|
| FECHA      | HORA          | DÍAS DESPUÉS DE | Φ CASING | NIVEL | CAP  | Prof. Instalación | BLS OIL | BLS AGUA |  |  |  |
| FEUTIA     | пока          | INTERVENCIÓN    | in       | ft    | ft   | ft                | DL3 UIL | DLS AGUA |  |  |  |
| 03/10/2012 |               | 1               | 8,625    | 2878  | 2903 | 2903              | 1,8     | 0,0      |  |  |  |
| 04/10/2012 | 9:25          | 2               | 8,625    | 2878  | 2903 | 2903              | 1,8     | 0,0      |  |  |  |
| 05/10/2012 | 10:30         | 3               | 8,625    | 2858  | 2903 | 2903              | 3,3     | 0,0      |  |  |  |
| 06/10/2012 | 8:00          | 4               | 8,625    | 2858  | 2903 | 2903              | 3,3     | 0,0      |  |  |  |

El nivel de fluido se encuentre en el csg 8 5/8" acumulo 3 barriles de petróleo alcanzando un nivel de 45'.

#### Curva de restauración de nivel



#### POZO: TIG0030


|            | TIG0030 (5/4)                     |                 |          |       |      |                   |         |          |  |  |  |
|------------|-----------------------------------|-----------------|----------|-------|------|-------------------|---------|----------|--|--|--|
| FECHA      | HORA DÍAS DESPUÉS DE INTERVENCIÓN | DÍAS DESPUÉS DE | Φ CASING | NIVEL | CAP  | Prof. Instalación | BLS OIL | BLS AGUA |  |  |  |
| FEORA      |                                   | INTERVENCIÓN    | in       | ft    | ft   | ft                |         | DL3 AGUA |  |  |  |
| 25/10/2012 | 8:40                              | 2               | 6,625    | 1880  | 1900 | 2145              | 0,9     | 10,4     |  |  |  |
| 26/10/2012 | 9:35                              | 3               | 6,625    | 1880  | 1910 | 2145              | 1,3     | 10,0     |  |  |  |
| 27/10/2012 | 8:15                              | 4               | 6,625    | 1880  | 1920 | 2145              | 1,7     | 9,6      |  |  |  |

#### Curva de Restauración de nivel.



# ANEXO V GASTOS DE OPERACIÓN DE SWAB Y BOMBEO MECÁNICO, 2012.

# ANEXO 5.1 SISTEMA DE LEVANTAMIENTO ARTIFICIAL DE BOMBEO MECÁNICO



Fuente: "2- Exploración y producción de petróleo: Bombeo Mecánico, pag 10".

# PLANILLA DE GASTOS DE BOMBEO MECÁNICO

| DESCRIPCIÓN                     | MONTO<br>MENSUAL | FUENTE DE<br>INFORMACIÓN |
|---------------------------------|------------------|--------------------------|
| EXTRACCION Y PRODUCCION BM      |                  |                          |
| Aportes a la seguridad social   | 4.142,53         | Reportes profit          |
| Beneficios sociales e indem.    | 5.669,21         | Reportes profit          |
| Combustible                     | 1.913,71         | Detalle de consumo -BAAN |
| Consumo de Repuestos            | 4.796,93         | Detalle de consumo -BAAN |
| Horas Extras                    | 5.048,09         | Reportes profit          |
| Sueldos.salarios.demas remune.  | 15.166,79        | Reportes profit          |
| Alimentacion                    | 369,58           | Reportes profit          |
| MANTENIMIENTO.                  |                  |                          |
| Consumo de Repuestos            | 20.563,17        | Detalle de consumo- BAAN |
| Grasas y lubricantes            | 3.419,10         | Detalle de consumo- BAAN |
| Mantenimiento y Reparaciones    | 6.799,68         | Detalle de consumo- BAAN |
| Mantenimiento Equipo y Talleres | 1108,78          | Detalle de consumo- BAAN |
| GASTOS DE OPERACIÓN BM.         | 68.997,57        |                          |

# GASTOS MENSUALES DE EXTRACCIÓN DE CRUDO DE BM DEL 2012

|            | BOMBEO MECÁNICO |                       |  |  |  |  |  |  |  |
|------------|-----------------|-----------------------|--|--|--|--|--|--|--|
| MES        | COMBUSTIBLE     | CONSUMOS DE REPUESTOS |  |  |  |  |  |  |  |
| ENERO      | 1780,99         | 2655,45               |  |  |  |  |  |  |  |
| FEBRERO    | 1809,3          | 1933,51               |  |  |  |  |  |  |  |
| MARZO      | 1630,9          | 1373,99               |  |  |  |  |  |  |  |
| ABRIL      | 1788,2          | 3162,5                |  |  |  |  |  |  |  |
| MAYO       | 1695,2          | 6543,63               |  |  |  |  |  |  |  |
| JUNIO      | 2253,5          | 3587,3                |  |  |  |  |  |  |  |
| JULIO      | 1830,7          | 5339,77               |  |  |  |  |  |  |  |
| AGOSTO     | 2001,65         | 5348,84               |  |  |  |  |  |  |  |
| SEPTIEMBRE | 1727,2          | 4315,84               |  |  |  |  |  |  |  |
| OCTUBRE    | 2333,31         | 11363                 |  |  |  |  |  |  |  |
| NOVIEMBRE  | 1816,9          | 4669,2                |  |  |  |  |  |  |  |
| DICIMBRE   | 2296,7          | 7270,14               |  |  |  |  |  |  |  |
| PROMEDIO   | 1913,7125       | 4796,93               |  |  |  |  |  |  |  |

| MANTENIMIENTO BOMBEO MECÁNICO |                       |                      |                         |  |  |  |  |  |
|-------------------------------|-----------------------|----------------------|-------------------------|--|--|--|--|--|
| MES                           | CONSUMOS DE REPUESTOS | GRASAS Y LUBRICANTES | MANT EQUIPOS Y TALLERES |  |  |  |  |  |
| ENERO                         | 11363,22              | 3758,858             | 2560,85                 |  |  |  |  |  |
| FEBRERO                       | 20650,1               | 3161,75              | 915,23                  |  |  |  |  |  |
| MARZO                         | 24218,17              | 3682,81              | 515,12                  |  |  |  |  |  |
| ABRIL                         | 23005,97              | 3132,17              | 1795,11                 |  |  |  |  |  |
| MAYO                          | 29908,45              | 3844,37              | 488,64                  |  |  |  |  |  |
| JUNIO                         | 29684,49              | 3658,72              | 1733,53                 |  |  |  |  |  |
| JULIO                         | 25259,91              | 3822,26              | 1592,86                 |  |  |  |  |  |
| AGOSTO                        | 12903,92              | 3286,2               | 917,3                   |  |  |  |  |  |
| SEPTIEMBRE                    | 15406,43              | 2895,81              | 1332,63                 |  |  |  |  |  |
| OCTUBRE                       | 18660,45              | 3858,11              | 766,59                  |  |  |  |  |  |
| NOVIEMBRE                     | 16056,33              | 2730,03              | 543,51                  |  |  |  |  |  |
| DICIMBRE                      | 19640,56              | 3198,15              | 143,98                  |  |  |  |  |  |
| PROMEDIO                      | 20563,16667           | 3419,103167          | 1108,779167             |  |  |  |  |  |

ANEXO 5.2 SISTEMA DE LEVANTAMIENTO ARTIFICIAL POR SWAB.



# PLANILLA DE GASTOS DE SWAB

| DESCRIPCIÓN                    | MONTO<br>MENSUAL | FUENTE DE<br>INFORMACIÓN |
|--------------------------------|------------------|--------------------------|
| OPERACIÓN Y PRODUCCION SWAB    |                  |                          |
| Aportes a la seguridad social  | 6.353,21         | Reportes Profit          |
| Beneficios sociales e indem.   | 11.592,64        | Reportes Profit          |
| Combustible                    | 15.739,63        | Detalle de consumo- BAAN |
| Consumo de Repuestos           | 16.840,19        | Detalle de consumo- BAAN |
| Horas Extras                   | 10.168,98        | Reportes Profit          |
| Sueldos.salarios.demas remune. | 20.814,49        | Reportes Profit          |
| Alimentacion                   | 160,36           | Reportes Profit          |
| Capacitacion Personal          | 2.175,73         | Reportes Profit          |
| MANTENIMIENTO                  |                  |                          |
| Equipos pesados                | 15.323,31        | Detalle de consumo- BAAN |
| Grasas y lubricantes           | 1.516,22         | Detalle de consumo- BAAN |
| Alquiler de la unidad          | 8.516,93         |                          |
| GASTOS DE OPERACIÓN DE SWAB.   | 109.201,68       |                          |

## GASTOS MENSUALES DE EXTRACCIÓN DE CRUDO DE SW DEL 2012.

| SWAB       |             |                       |  |  |  |  |  |
|------------|-------------|-----------------------|--|--|--|--|--|
| MES        | COMBUSTIBLE | CONSUMOS DE REPUESTOS |  |  |  |  |  |
| ENERO      | 16251,94    | 13996,83              |  |  |  |  |  |
| FEBRERO    | 14428,33    | 13506,46              |  |  |  |  |  |
| MARZO      | 16283,14    | 16524,06              |  |  |  |  |  |
| ABRIL      | 17286       | 17455,7               |  |  |  |  |  |
| MAYO       | 16082,2     | 17605,14              |  |  |  |  |  |
| JUNIO      | 14292       | 11587,31              |  |  |  |  |  |
| JULIO      | 14409       | 19197,71              |  |  |  |  |  |
| AGOSTO     | 14373,96    | 21609,04              |  |  |  |  |  |
| SEPTIEMBRE | 13713       | 16304,79              |  |  |  |  |  |
| OCTUBRE    | 17582       | 14640,99              |  |  |  |  |  |
| NOVIEMBRE  | 17730       | 19307,24              |  |  |  |  |  |
| DICIEMBRE  | 16444       | 20347,04              |  |  |  |  |  |
| PROMEDIO   | 15739,63083 | 16840,1925            |  |  |  |  |  |

| MANTENIMIENTO DE EQUIPO PESAD EQUIPENINSULA |                      |                      |  |  |  |  |  |
|---------------------------------------------|----------------------|----------------------|--|--|--|--|--|
| MES                                         | CONSUMOS Y REPUESTOS | GRASAS Y LUBRICANTES |  |  |  |  |  |
| ENERO                                       | 21208,54             | 1438,16              |  |  |  |  |  |
| FEBRERO                                     | 18922,68             | 1852,88              |  |  |  |  |  |
| MARZO                                       | 20693,08             | 1437                 |  |  |  |  |  |
| ABRIL                                       | 18761,94             | 1634,72              |  |  |  |  |  |
| MAYO                                        | 20950,59             | 1513,53              |  |  |  |  |  |
| JUNIO                                       | 10899,37             | 1433,76              |  |  |  |  |  |
| JULIO                                       | 17407,57             | 1433,55              |  |  |  |  |  |
| AGOSTO                                      | 19634,64             | 1278,82              |  |  |  |  |  |
| SEPTIEMBRE                                  | 10624,01             | 1454,19              |  |  |  |  |  |
| OCTUBRE                                     | 7684,79              | 1127,75              |  |  |  |  |  |
| NOVIEMBRE                                   | 6347,99              | 1153,83              |  |  |  |  |  |
| DICIEMBRE                                   | 10744,57             | 2436,4               |  |  |  |  |  |
| PROMEDIO                                    | 15323,31417          | 1516,215833          |  |  |  |  |  |

| DESCRIPCIÓN                     | ВМ        | SWAB        | DIFERENCIA |  |
|---------------------------------|-----------|-------------|------------|--|
| EXTRACCION Y PRODUCCION         |           |             |            |  |
| Aportes a la seguridad social   | 4.142,53  | 6.353,21    | 2.210,68   |  |
| Beneficios sociales e indem.    | 5.669,21  | 11.592,64   | 5.923,43   |  |
| Combustible                     | 1.913,71  | 15739,63    | 12043,26   |  |
| Consumo de Repuestos            | 4.796,93  | 16840,1925  | 12.043,26  |  |
| Horas Extras                    | 5.048,09  | 10.168,98   | 5.120,89   |  |
| Sueldos.salarios.demas remune.  | 15.166,79 | 20.814,49   | 5.647,70   |  |
| Alimentacion                    | 369,58    | 160,36      | -209,22    |  |
| Capacitacion Personal           |           | 2.175,73    | 2175,73    |  |
| MANTENIMIENTO.                  |           |             |            |  |
| Equipos pesados                 |           | 15323,31417 | 15.323,31  |  |
| Consumo de Repuestos            | 20.563,17 |             | -20.563,17 |  |
| Grasas y lubricantes            | 3.419,10  | 1516,215833 | -1.902,89  |  |
| Mantenimiento y Reparaciones    | 6.799,68  |             | -6799,68   |  |
| Mantenimiento Equipo y Talleres | 1108,78   |             | -1.108,78  |  |
| Alquiler de la unidad           |           | 8.516,93    | 8.516,93   |  |
| GASTOS DE OPERACIÓN             | 68.997,57 | 109.201,68  |            |  |

**NOTA:** El gasto mensual de consumo de las operaciones de Swab y Bombeo Mecánico fueron filtrados mediante la tabla modelo que se muestra acontinuación cabe recalcar que estos datos fueron obtenidos del programa GSP (Tabla 41-42

| FECHA      | DESCRIPCION COD    | CAN | UNID | TOTAL— D | ESCRIP. CTA CONTABLE | DESCRIP. DIMENSION 1    | DEPARTAMENTO         | AF   | DESTINO _     | _                  | REFERENCIA                                                   |
|------------|--------------------|-----|------|----------|----------------------|-------------------------|----------------------|------|---------------|--------------------|--------------------------------------------------------------|
|            |                    | ¥ ¥ | ¥    | <b>Y</b> | ~                    |                         | <u> </u>             |      | ¥             | GRUPO FOLLOGO      | <u>*</u>                                                     |
| 02/01/2012 | DIESEL 2 PETROLERO | -21 | gl   | -62,4    |                      | EXTRACCION Y PRODUCCION | DPTO PRODUCCION B    |      | CAM308        | EQUIPOS PESADOS    | PAPELETA #1598 / CAM308                                      |
| 02/01/2012 | GASOLINA EXTRA     | -1  | gl   | -2,75    |                      | EXTRACCION Y PRODUCCION | DPTO PRODUCCION B    |      | PRODUCCION    | DEPARTAMENTOS      | PAPELETA # 1595 / ENCENDER MOTORES UNCE                      |
| 02/01/2012 | GASOLINA EXTRA     | -1  | gl   | -2,75    |                      | EXTRACCION Y PRODUCCION | DPTO PRODUCCION B    |      | PRODUCCION    | DEPARTAMENTOS      | PAPELETA #1595 / ENCENDER MOTORES UNCO                       |
| 02/01/2012 | GASOLINA EXTRA     | -1  | gl   | -2,75    |                      | EXTRACCION Y PRODUCCION | DPTO PRODUCCION B    |      | PRODUCCION    | DEPARTAMENTOS      | PAPELETA #1596 / ENCENDER MOTORES UNCE                       |
| 02/01/2012 | GASOLINA EXTRA     | -1  | gl   | -2,75    |                      | EXTRACCION Y PRODUCCION | DPTO PRODUCCION B    |      | PRODUCCION    | DEPARTAMENTOS      | PAPELETA #1596 /ENCENDER MOTORES UNCO                        |
| 02/01/2012 | GASOLINA EXTRA     | -1  | gl   | -2,75    |                      | EXTRACCION Y PRODUCCION | DPTO PRODUCCION B    |      | PRODUCCION    | DEPARTAMENTOS      | PAPELETA # 1596 / ENCENDER MOTORES                           |
| 03/01/2012 | GASOLINA EXTRA     | -1  | gl   | -2,75    |                      | EXTRACCION Y PRODUCCION | DPTO PRODUCCION B    |      | PRODUCCION    | DEPARTAMENTOS      | PAPELETA # 1597 / ENCENDER MOTORES                           |
| 03/01/2012 | GASOLINA EXTRA     | -1  | gl   | -2,75    |                      | EXTRACCION Y PRODUCCION | DPTO PRODUCCION B    |      | PRODUCCION    | DEPARTAMENTOS      | PAPELETA # 1597 / ENCENDER MOTORES UNCE                      |
| 03/01/2012 | GASOLINA EXTRA     | -1  | gl   | -2,75    |                      | EXTRACCION Y PRODUCCION | DPTO PRODUCCION B    |      | PRODUCCION    | DEPARTAMENTOS      | PAPELETA # 1597 / ENCENDER MOTORES UNN                       |
| 04/01/2012 | GASOLINA EXTRA     | -1  | gl   | -2,75    |                      | EXTRACCION Y PRODUCCION | DPTO PRODUCCION B    |      | PRODUCCION    | DEPARTAMENTOS      | PAPELETA # 1598 / ENCENDER MOTORES                           |
| 04/01/2012 | GASOLINA EXTRA     | -1  | gl   | -2,75    |                      | EXTRACCION Y PRODUCCION | DPTO PRODUCCION B    |      | PRODUCCION    | DEPARTAMENTOS      | PAPELETA # 1598 / ENCENDER MOTORES UNCE                      |
| 04/01/2012 | GASOLINA EXTRA     | -1  | gl   | -2,75    |                      | EXTRACCION Y PRODUCCION | DPTO PRODUCCION B    | M    | PRODUCCION    | DEPARTAMENTOS      | PAPELETA # 1598 / ENCENDER MOTORES                           |
| 05/01/2012 | DIESEL 2 PETROLERO | -27 | gl   | -80,23   |                      | EXTRACCION Y PRODUCCION | DPTO PRODUCCION B    | M    | CAM308        | EQUIPOS PESADOS    | PAPELETA # 1602 / cam308                                     |
| 05/01/2012 | DIESEL 2 PETROLERO | -26 | gl   | -77,26   |                      | EXTRACCION Y PRODUCCION | DPTO PRODUCCION B    | M    | CAM304        | EQUIPOS PESADOS    | PAPELETA # 1602 / CAM304                                     |
| 05/01/2012 | GASOLINA EXTRA     | -1  | gl   | -2,75    | Combustible          | EXTRACCION Y PRODUCCION | DPTO PRODUCCION B    | M    | PRODUCCION    | DEPARTAMENTOS      | PAPELETA #1599 / ENCENDER MOTORES UNCO                       |
| 05/01/2012 | GASOLINA EXTRA     | -1  | gl   | -2,75    | Combustible          | EXTRACCION Y PRODUCCION | DPTO PRODUCCION B    | M    | PRODUCCION    | DEPARTAMENTOS      | PAPELETA # 1599 / ENCENDER MOTORES UNCE                      |
| 05/01/2012 | GASOLINA EXTRA     | -5  | gl   | -13,74   | Combustible          | EXTRACCION Y PRODUCCION | DPTO PRODUCCION B    | M    | VEH286        | VEHICULOS LIVIANOS | PAPELETA # 1599 / ENCENDER MOTORES UNN                       |
| 05/01/2012 | GASOLINA EXTRA     | -1  | gl   | -2,75    | Combustible          | EXTRACCION Y PRODUCCION | DPTO PRODUCCION B    | M    | PRODUCCION    | DEPARTAMENTOS      | PAPELETA # 1599 / ENCEMNDER MOTORES UNN                      |
| 06/01/2012 | GASOLINA EXTRA     | -1  | gl   | -2,75    | Combustible          | EXTRACCION Y PRODUCCION | DPTO PRODUCCION B    | M    | PRODUCCION    | DEPARTAMENTOS      | PAPELETA # 1601 / ENCENDER MOTORES UNCE                      |
| 06/01/2012 | GASOLINA EXTRA     | -1  | gl   | -2,75    | Combustible          | EXTRACCION Y PRODUCCION | DPTO PRODUCCION B    | M    | PRODUCCION    | DEPARTAMENTOS      | PAPELETA # 1601 / ENCENDER MOTORES                           |
| 06/01/2012 | GASOLINA EXTRA     | -1  | gl   | -2,75    | Combustible          | EXTRACCION Y PRODUCCION | DPTO PRODUCCION B    | M    | PRODUCCION    | DEPARTAMENTOS      | PAPELETA # 1601 / ENCENDER MOTORES UNN                       |
| 08/01/2012 | GASOLINA EXTRA     | -1  | gl   | -2,75    | Combustible          | EXTRACCION Y PRODUCCION | DPTO PRODUCCION B    | M    | PRODUCCION    | DEPARTAMENTOS      | PAPELETA No 1603 - (07-ENERO-2012) - ENCENDER MOTORES VEH274 |
| 08/01/2012 | GASOLINA EXTRA     | -1  | gl   | -2,75    | Combustible          | EXTRACCION Y PRODUCCION | DPTO PRODUCCION B    | M    | PRODUCCION    | DEPARTAMENTOS      | PAPELETA No 1603 - (07-ENERO-2012) - ENCENDER MOTORES VEH286 |
| 08/01/2012 | GASOLINA EXTRA     | -1  | gl   | -2,75    | Combustible          | EXTRACCION Y PRODUCCION | DPTO PRODUCCION B    | M    | PRODUCCION    | DEPARTAMENTOS      | PAPELETA No 1603 - (07-ENERO-2012) - ENCENDER MOTORES VEH285 |
| 08/01/2012 | DIESEL 2 PETROLERO | -22 | gl   | -65,37   | Combustible          | EXTRACCION Y PRODUCCION | DPTO PRODUCCION B    | M    | CAM304        | EQUIPOS PESADOS    | PAPELETA No 1602 - (07-ENERO-2012) - CAM304                  |
| 09/01/2012 | DIESEL 2 PETROLERO | -21 | gl   | -62,4    | Combustible          | EXTRACCION Y PRODUCCION | DPTO PRODUCCION B    | М    | CAM308        | EQUIPOS PESADOS    | PAPELETA No 1604 - (08-ENERO-2012) - CAM308                  |
| 10/01/2012 | GASOLINA EXTRA     | -1  | gl   | -2,75    | Combustible          | EXTRACCION Y PRODUCCION | DPTO PRODUCCION B    | М    | PRODUCCION    | DEPARTAMENTOS      | PAPELETA No 1604 - (08-ENERO-2012) - ENCENDER MOTORES VEH274 |
| 10/01/2012 | GASOLINA EXTRA     | -1  | gl   | -2,75    | Combustible          | EXTRACCION Y PRODUCCION | DPTO PRODUCCION B    | М    | SISTEMAS      | DEPARTAMENTOS      | PAPELETA No 1604 - (08-ENERO-2012) - ENCENDER MOTORES VEH286 |
| 10/01/2012 | DIESEL 2 PETROLERO | -18 | gl   | -53,49   | Combustible          | EXTRACCION Y PRODUCCION | DPTO PRODUCCION B    | М    | CAM304        | EQUIPOS PESADOS    | PAPELETA No 1605 - (09-ENERO-2012) - CAM304                  |
| 11/01/2012 | GASOLINA EXTRA     | -1  | gl   | -2,75    | Combustible          | EXTRACCION Y PRODUCCION | DPTO PRODUCCION B    | М    | PRODUCCION    | DEPARTAMENTOS      | PAPELETA No 1605 - (09-ENERO-2012) - ENCENDER MOTORES VEH286 |
| 11/01/2012 | GASOLINA EXTRA     | -1  | gl   | -2,75    |                      | EXTRACCION Y PRODUCCION | DPTO PRODUCCION B    | М    | PRODUCCION    | DEPARTAMENTOS      | PAPELETA No 1605 - (09-ENERO-2012) - ENCENDER MOTORES VEH274 |
| 11/01/2012 | GASOLINA EXTRA     | -1  | gl   | -2,75    | Combustible          | EXTRACCION Y PRODUCCION | TO MANTENIMIENTO VEI | HCUL | PRODUCCION    | DEPARTAMENTOS      | PAPELETA No 1605 - (09-ENERO-2012) - ENCENDER MOTORES        |
| 11/01/2012 | GASOLINA EXTRA     | -5  | gl   | -13,74   |                      | EXTRACCION Y PRODUCCION | DPTO PRODUCCION B    |      | VEH285        | VEHICULOS LIVIANOS | PAPELETA No 1605 - (09-ENERO-2012) - VEH285                  |
| 12/01/2012 | GASOLINA EXTRA     | -1  | gl   | -2,75    |                      | EXTRACCION Y PRODUCCION | DPTO PRODUCCION B    |      | PRODUCCION    | DEPARTAMENTOS      | PAPELETA No 1606 - (10-ENERO-2012) - ENCENDER MOTORES        |
| 12/01/2012 | GASOLINA EXTRA     | -1  | g    | -2,75    |                      | EXTRACCION Y PRODUCCION | DPTO PRODUCCION B    |      | MANTENIMIENTO | DEPARTAMENTOS      | PAPELETA No 1606 - (10-ENERO-2012) - ENCENDER MOTORES        |

Tabla Modelo de consumo mensual del Campo Ancón.