

UNIVERSIDAD ESTATAL PENÍNSULA DE SANTA ELENA FACULTAD DE CIENCIAS DE LA INGENIERÍA CARRERA DE INGENIERÍA EN PETRÓLEO

TEMA

"INTERPRETACIÓN DE LOS MÉTODOS DE PRUEBA DE PRESIÓN Y MODELOS DE FLUJO PARA ANÁLISIS COMPARATIVO ENTRE POZOS HORIZONTALES Y VERTICALES DEL ORIENTE ECUATORIANO"

PROYECTO PARA LA OBTENCIÓN DEL TÍTULO DE INGENIERO EN

PETRÓLEO

AUTORES:

EDISON ADALBERTO YAGUAL MUÑOZ

VICENTE MAURICIO ORELLANA LUCUMI

ASESOR:

ING. CARLOS ALFREDO MALAVE CARRERA

SANTA ELENA-ECUADOR

2015

UNIVERSIDAD ESTATAL PENÍNSULA DE SANTA ELENA

FACULTAD DE CIENCIAS DE LA INGENIERÍA ESCUELA DE INGENIERÍA EN PETRÓLEO. CARRERA DE INGENIERÍA EN PETRÓLEO

"INTERPRETACIÓN DE LOS MÉTODOS DE PRUEBA DE PRESIÓN Y MODELOS DE FLUJO PARA ANÁLISIS COMPARATIVO ENTRE POZOS HORIZONTALES Y VERTICALES DEL ORIENTE ECUATORIANO"

TESIS DE GRADO

PREVIA A LA OBTENCIÓN DEL TÍTULO DE:

INGENIERO EN PETRÓLEO

AUTORES:

EDISON ADALBERTO YAGUAL MUÑOZ

VICENTE MAURICIO ORELLANA LUCUMI

ASESOR

ING. CARLOS ALFREDO MALAVE CARRERA

LA LIBERTAD-ECUADOR

2015

APROBACIÓN DEL TUTOR

Como Tutor de la tesis: "INTERPRETACIÓN DE LOS MÉTODOS DE PRUEBA DE PRESIÓN Y MODELOS DE FLUJO PARA ANÁLISIS COMPARATIVO ENTRE POZOS HORIZONTALES Y VERTICALES DEL ORIENTE ECUATORIANO" desarrollada por los estudiantes Edison Adalberto Yagual Muñoz, Vicente Mauricio Orellana Lucumi, egresados de la Carrera de Ingeniería en Petróleo, Facultad de Ciencias de la Ingeniería de la Universidad Éstatal Península de Santa Elena, previo a la obtención del título de Ingeniero en Petróleo, me permito declarar que luego de haberla dirigido, estudiado y revisado, la apruebo en su totalidad

Atentamente,

ING. CARLOS ALFREDO MALAVE CARRERA

TUTOR DE TESIS

DECLARACIÓN EXPRESA

Nosotros, Edison Adalberto Yagual Muñoz y Vicente Mauricio Orellana Lucumi, declaramos bajo juramento que el trabajo descrito es de nuestra autoría; que no ha sido previamente presentada para ningún grado o calificación profesional; y que he consultado las referencias bibliográficas que se incluyen en éste documento. A través de la presente declaración cedo mis derechos de propiedad intelectual correspondiente a éste trabajo, a la Universidad Estatal Península de Santa Elena, según lo establecido por la ley de Propiedad intelectual, por su reglamento y por la normativa institucional vigente.

Edison Yagual Muñoz

Vicente Orellana Lucumi

DEDICATORIA

A Dios por haberme dado la fortaleza suficiente para no doblegar en los momentos de difíciles y poder cumplir el objetivo propuesto.

A mis padres Angel Yagual Suarez y Aracelia Muñoz Ortega por su confianza y apoyo incondicional.

A todas aquellas personas que creyeron en mí y me alentaban para seguir adelante.

Edison Yagual Muñoz

AGRADECIMIENTO

Con todo mi corazón a mis padres por haberme comprendido en aquellos momentos difíciles y haberme dado una voz de aliento llenándome de fortaleza y de esa manera no doblegar y cumplir aquella meta que al inicio parecía solo un sueño.

A todos los que conforman y aquellos que formaron parte de la carrera de ingeniería en petróleo por sus conocimientos brindado y apoyo incondicional para poder cumplir el objetivo trazado.

Edison Yagual Muñoz

DEDICATORIA

A Dios por darme la fuerza en los momentos más difíciles en la elaboración de éste proyecto.

A mi esposa e hijos por su comprensión y por su apoyo incondicional en mi preparación profesional.

A mis padres por sus enseñanzas y por brindarme sus buenos consejos.

A mis hermanos por todo el cariño que me han brindado durante toda el tiempo que hemos compartido juntos.

A mi hermano José Encalada por su apoyo total durante todo mi proceso estudiantil

Al Ing. Carlos Portilla Lazo Director de la Carrera de Ingeniería en Petróleos por todo su apoyo brindado para la elaboración de éste proyecto de tesis.

Al Ing. Carlos Alfredo Malavé Carrera por todos sus consejos brindados en la elaboración de tesis como tutor.

Al Ing. Alamir Alvarez Loor, Decano de la Facultad de Ciencias de la Ingeniería por darme apoyo durante mi formación profesional.

A todos mis familiares y amigos que aportaron de una u otra manera para la conclusión de éste proyecto de tesis.

Vicente Orellana Lucumi

AGRADECIMIENTO

Con todo mi amor a mi esposa y mis dos amados hijos (Allison y Mauricio) pilares fundamentales en mi vida por su comprensión y su apoyo para la terminación con éxito de éste proyecto.

A mis padres por sus enseñanzas éticas y morales durante mi vida.

A los directivos y docentes de la Facultad de Ciencias de la Ingeniería por sus enseñanzas y consejos durante todo mi proceso dentro de la universidad.

Vicente Orellana Lucumi

TRIBUNAL DE GRADO

Ing. Alamir Álvarez Loor, Mg DECANO DE LA FACULTAD DE CIENCIAS DE LA INGENIERÍA Ing. Carlos Portilla Lazo DIRECTOR DE LA ESCUELA DE INGENIERÍA EN PETRÓLEO

Ing. Carlos Alfredo Malavé Carrera PROFESOR TUTOR Ing. Raul Morgner Mangold, MSc PROFESOR DE ÁREA

Ab. Joe Espinoza Ayala SECRETARIO GENERAL

INDICE GENERAL

Contenido
INDICE GENERALx
ÍNDICE DE FIGURAS xiv
ÍNDICE DE TABLAS xvi
ABREVIATURAS xviii
SIMBOLOGIA xix
RESUMEN xxiv
CAPITULO I1
1. PRINCIPIOS UTILIZADOS EN LA PRUEBA DE PRESIONES (FLUJOS EN MEDIOS POROSOS)
1 1 Introducción 2
12 Lev de Darcy 2
1.3. Compresibilidad
1.4. Ecuación de Difusividad
1.4.1. Solución de la ecuación de Difusividad7
1.5. Zona compresible9
1.6. Radio de investigación11
1.7. Regímenes de flujo
1.8. Principio de superposición14
1.10. Factor de piel
CAPÍTULO II
2. MÉTODOS PARA ANALIZAR PRUEBAS DE PRESIÓN EN POZOS VERTICALES22
2.1. Introducción23
2.2. Regiones de tiempo en gráficos de prueba de presiones en pozos verticales25
2.3. Metodos de interpretación convencional27
2.3.1. Test Drawdown27
2.3.1.1. Análisis de las Pruebas de Declinación de Presión para las Condiciones del Transiente28
2.3.2. Buildup método de Horner30
2.3.2.1. Interpretación31
2.3.2.2. La presión extrapolada32

	2.3	8.3.	Buil	dup método MHD	32
		2.3.3.	1.	Interpretación	35
	2.3	8.4.	Pru	ebas después de diferentes tasas de flujo	35
2.3.4.1.		1.	Interpretación	36	
		2.3.4.	2.	Presión extrapolada	37
		2.3.4.	3.	Simplificación del historial de las tasas de flujo	37
	2.3	8.5.	Rad	io de investigación de un buildup	38
2	2.4.	Mé	todos	s de curva tipo	39
2	2.5.	La d	leriva	ada	40
	2.5	5.1.	La r	epresentación de la derivada	42
	2.5	5.2.	Inte	rpretación directa por medio de la derivada	42
	2.5	5.3.	Con	clusión	44
CA	PITU	lo III.	•••••		45
3.	М	ODELC	D DE Y	ACIMIENTOS.	45
3	3 .1.	Dob	ole po	prosidad	46
	3.1	l .1 .	Por	osidad dual PSS (Régimen pseudos estable con flujo interporoso)	48
	3.1	L .2 .	Por	osidad dual. (Régimen de flujo transiente con flujo interporoso)	50
3	3.2.	Dob	ole pe	ermeabilidad	52
3	8.3.	Mo	delo	radial compuesto	54
3	8.4.	Mo	delo	compuesto lineal	56
CA	PÍTU	LO IV	•••••		59
4.	M	ÉTODO) PAR	A ANALIZAR PRUEBA DE PRESIONES EN POZOS HORIZONTALES	59
4	i .1.	Dife	erenc	ias con las pruebas de pozos verticales	60
4	1.2.	Reg	ímen	es de flujo posible	60
4	1.3.	Mé	todo	matemático	61
	4.3	8.1.	Solu	ución analítica para el drawdown	62
	4.3	8.2.	Apr	oximaciones de tiempo para periodos de flujo	65
4.3.3.		Solu	ución analítica para buildup	67	
		4.3.3.	1.	Flujo radial de tiempo temprano (flujo radial vertical)	68
		4.3.3.	2.	Flujo lineal de tiempo intermedio	69
		4.3.3.	3.	Flujo radial de tiempo intermedio tardío (flujo radial	
	horizontal)69				

	4.3.3.4 contin	 Flujo lineal de tiempo tardío (flujo lineal estado pseudo- uo) 70
4.	3.4.	Factor de piel70
	4.3.4.1	. Factores de piel71
	4.3.4.2	P. Factores de piel drawdown71
	4.3.4.3	B. Factores de piel buildup72
Capitul	lo V	
5. DI	ESARRO	LLO DE PROBLEMAS DE CAMPO73
5.1.	Intro	ducción74
5.2.	Anál	isis de la prueba de réstauración de presión del pozo vertical UPSE 1V.74
5.	2.1.	Características de la prueba de presión del pozo UPSE 01V74
5.	2.2.	Datos básicos para la evaluación77
5.	2.3.	Interpretación78
5.	2.4.	Resultados de la Interpretación83
5.3. 01H	Anál 84	isis de la prueba de réstauración de presión del pozo horizontal UPSE-
5.	3.1.	Características de la prueba de presión del pozo UPSE-01H84
5.	3.2.	Datos Básicos para la Evaluación86
5.	3.3.	Interpretación
5.	3.4.	Resultados de la Interpretación91
5.4.	Anál 92	isis de la prueba de réstauración de presión del pozo vertical UPSE 02V
5.	4.1.	Características de la prueba de presión del pozo UPSE 02V92
5.	4.2.	Datos básicos para la evaluación95
5.	4.3.	Interpretación96
5.	4.4.	Resultados de la Interpretación101
5.5. 02H	Anál 102	isis de la prueba de réstauración de presión del pozo horizontal UPSE-
5.	5.1.	Características de la prueba de presión del pozo UPSE-02H102
5.	5.2.	Datos Básicos para la Evaluación104
5.	5.3.	Interpretación105
5.	5.4.	Resultados de la Interpretación109
CONCL	USIONE	S Y RECOMENDACIONES110
Conclu	siones.	

Recomendaciones	
Bibliografía	115
ANEXOS	

ÍNDICE DE FIGURAS

Figura 1.2.A: Ley de Darcy	3
Figura 1.2.B: Ley de Darcy para Flujo Radial	4
Figura 1.5.A: Zona Comprensible	9
Figura 1.5.B: Zona Comprensible	10
Figura 1.6.A: Radio de Investigación	12
Figura 1.6.B: Radio de Investigación	12
Figura 1.8.A: Superposición en espacio (Yacimiento con "n" pozos productores)	16
Figura 1.8.B: Superposición en tiempo	17
Figura 1.9.A: Efectos de almacenamiento de pozo	17
Figura 1.9.B: Efectos de almacenamiento de pozo	18
Figura 1.9.C: Efectos de almacenamiento de pozo	19
Figura 1.10.A: Factor de piel	20
Figura 1.10.B: Factor de piel	21
Figura 2.1: Regiones de tiempo	26
Figura 2.2: Drawdown	26
Figura 2.3: Característica de un drawdown	29
Figura 2.4: Semi-log de presión drawdown	30
Figura 2.5: Comportamiento de la presión – grafico de Horner	31
Figura 2.6: valores de Δt_{DA} en función t_p para el metodo de HORNER	34
Figura 2.7: Valores para Δt_{DA} en función de t_{pDA} para el método MDH	34
Figura 2.8: Principio de superposición.	36
Figura 2.9: Metodos de curvas tipo	40
Figura 2.10: Funcion derivada de presión para yacimiento homogéneo	43
Figura 3.1: Modelo de yacimiento de doble porosidad	46
Figura 3.2: Contribución de la matriz	47
Figura 3.3: Régimen pseudos éstable con flujo interporoso	48
Figura 3.4: Régimen pseudos éstable con porosidad dual	49
Figura 3.5: (Régimen de flujo transiente con flujo interporoso)	50
Figura 3.6: Modelo de doble permeabilidad	49
Figura 3.7: Curvas para yacimientos de doble permeabilidad	53
Figura 3.8: Modelo radial compuesto	54
Figura 3.9: Modelo composicional lineal	56
Figura 3.10: Curvas de respuéstas inmediatas.	57
Figura 3.11: Curvas características en las zonas de éstabilización.	58
Figura 6.4: Regímenes de flujo horizontal.	61
Figura 5.2.1: Datos de presiones vs tiempo del pozo vertical UPSE 01V	76
Figura: Figura 5.2.3.A: Datos de la derivada de presión vs tiempo equivalente del poz	20
UPSE 01V	80
Figura 5.2.3B Presión vs tiempo de Horner del pozo UPSE 01V	82
Figura 5.3.1: Datos de presiones vs tiempo del pozo horizontal UPSE 01H	85

Figura 5.3.3.A: Datos de la derivada de presión vs tiempo equivalente del pozo	
horizontal UPSE 01H8	8
Figura 5.3.3.B: Presión vs tiempo de Horner del pozo horizontal UPSE 01H90	0
Figura 5.4.1: Datos de presiones vs tiempo del pozo vertical UPSE 02V8	9
Figura 5.4.3.A: Datos de la derivada de presión vs tiempo equivalente del pozo vertical	
UPSE 02V	8
Figura 5.4.3B Presión vs tiempo de Horner del pozo vertical UPSE 02V100	0
Figura 5.5.1: Datos de presiones vs tiempo del pozo horizontal UPSE 02H10	3
Figura 5.5.3.A: Datos de la derivada de presión vs tiempo equivalente del pozo	
horizontal UPSE 02H	6
Figura 5.5.3.B: Presión vs tiempo de Horner del pozo horizontal UPSE 02H104	8
Figura Anexo A.1: Cartas de identificación de yacimiento11	7
Figura Anexo A.2: modelos de yacimientos11	8
Figura Anexo A.3: Resumen de reacciones de modelos de Pozos -Yacimientos11	9
Figura Anexo B.1: Initialization dialog 1 of 2 (El diálogo de inicialización 1 de 2)120	0
Figura Anexo B.2: Initialization dialog 2 of 2 (El diálogo de inicialización 2 de 2)12	1
Figura Anexo B.3: Saphir main screen (Pantalla principal Saphir)12	1
Figura Anexo B.4: Load step 1 – Define data source (El paso de carga 1 la fuente de dato	s
_ Defin)	2
Figura Anexo B.5: Load step 2 – Data Format (El paso de carga 2 – el Formato de Datos)	
	2
Figura Anexo B.6: Loaded flowrates (Las tasas de flujos cargados)12	3
Figura Anexo B.7: Load pressure Step 1 – Define data source (El paso de presión de carga	а
1 la fuente de datos _ Defin)12	3
Figura Anexo B.8: Load pressure Step 2 – Data format (El paso de presión de carga 2 _	
los Datos el format)124	4
Figura Anexo B.9: History plot (historial de ploteo)124	4
Figura Anexo B.10: Extract dialogs (Extraiga diálogos)12	5
Figura Anexo B.11: After extract (Después de extracto)12	6
Figura Anexo B.12 : Model dialog (Modele diálogo)12	6
Figura Anexo B.13: Loglog matches (grafica loglog)12	7
Figura Anexo B.14: Match after regression (grafica despues de la regresion)12	7
Figura Anexo B.15: Horner plot (ploteo de horner)12	8

ÍNDICE DE TABLAS

Tabla # 1. Tabla de ecuaciones de la derivada de regímenes de flujo	.41
Tabla # 2. Factores de piel drawdow	.71
Elaborado por: Autores Edison Yagual Muñoz –Vicente Orellana Lucumi	.71
Tabla # 3. Factores de piel Buildup	.72
Tabla # 4. Tabla de eventos durante la prueba de producción y restauración de presiór	n
(BUILDUP) del pozo vertical UPSE 01V	.75
Tabla # 5. Datos de la prueba de producción del pozo vertical UPSE 01V	.77
Tabla # 6. Datos de parámetros de estrato del pozo vertical UPSE 01V	.78
Tabla # 7. Datos de parámetros de fluido del pozo vertical UPSE 01V	.78
Tabla # 8. Resultados de interpretación del método de Horner del pozo vertical UPSE	
01V	.83
Tabla # 9. Resultados de interpretación del método de la derivada del pozo vertical UF	SE
01V	.83
Tabla # 10. Resultados de interpretación modelos de flujo del pozo vertical UPSE 01V.	.83
Tabla # 11. Eventos durante la prueba de producción y restauración de presión	
(BUILDUP) del pozo horizontal UPSE 01H	.84
Tabla # 12. Datos de la prueba de producción del pozo horizontal UPSE 01H	.86
Tabla # 13. Datos de parámetros de estrato del pozo horizontal UPSE 01H	.86
Tabla # 14. Datos de parámetros de fluido del pozo horizontal UPSE 01H	.87
Tabla # 15. Resultados de interpretación del método de Horner del pozo horizontal UF	۶SE
01H	.91
Tabla # 16. Resultados de interpretación del método de la derivada del pozo horizonta	al
UPSE 01H	.91
Tabla # 17. Resultados de interpretación modelos de flujo del pozo Horizontal UPSE 01	1H
	.92
Tabla # 18. Tabla de eventos durante la prueba de producción y restauración de presid	ón
(BUILDUP) del pozo vertical UPSE 02V	.92
Tabla # 19. Datos de la prueba de producción del pozo vertical UPSE 02V	.95
Tabla # 20. Datos de parámetros de estrato del pozo vertical UPSE 02V	.96
Tabla # 21. Datos de parámetros de fluido del pozo vertical UPSE 02V	.96
Tabla # 22. Resultados de interpretación del método de Horner del pozo vertical UPSE	:
02V1	101
Tabla # 23. Resultados de interpretación del método de la derivada del pozo vertical	
UPSE 02V1	101
Tabla # 24. Resultados de interpretación modelos de flujo del pozo vertical UPSE 02V1	101
Tabla # 25. Eventos durante la prueba de producción y restauración de presión	
(BUILDUP) del pozo horizontal UPSE 02H1	102
Tabla # 26. Datos de la prueba de producción del pozo horizontal UPSE 02H1	104
Tabla # 27. Datos de parámetros de estrato del pozo horizontal UPSE 02H1	104
Tabla # 28. Datos de parámetros de fluido del pozo horizontal UPSE 02H1	105

Tabla # 29. Resultados de interpretación del método de Horner del pozo hor	izontal UPSE
02H	109
Tabla # 30. Resultados de interpretación del método de la derivada del pozo	horizontal
UPSE 02H	109
Tabla # 31. Resultados de interpretación modelos de flujo del pozo Horizonta	al UPSE 02H
	109
Tabla # 32. Datos de presión pozo vertical 01V	129
Tabla # 33. Datos de presión pozo vertical 02V	130
Tabla # 34. Datos de presión pozo horizontal 01H	131
Tabla # 35. Datos de presión pozo horizontal 02H	132

ABREVIATURAS

IARF	Infinite Ating Radial Flow (Flujo Radial Infinito)					
PSS	Estado Pseudocontinuo					
B UP	Build Up (Restauración de Presión)					
BSW	Basic Sediments and Water (Sedimentos Básicos y Agua)					
IPR Influjo del Pc	Inflow Performance Relationship (Relación de Sedimento de ozo)					
IP	Índice de Productividad					
MP	Mitad de Pe	erforaciones				
EPS Edimburgo)	Edimburg	Petroleum	Services	(Servicios	de	Petróleo
MD	Measured Depth (Profundidad Medida)					
TVD	Total Vertical Depth (Profundidad Total Vertical)					
PVT	Presión, Volumen y Temperatura					
MDH	Miller Dyes And Hutchinson					
GOR	Gas Oil Relation (Relación Gas Petróleo)					
EF	Eficiencia de Flujo					
ΑΡΙ	American	Petruleum	Institute	(Instituto	de	Petróleo

Americano)

SIMBOLOGIA

- S Sección transversal
- A Área del medio poroso
- K Permeabilidad del yacimiento sin daño
- ks Permeabilidad del yacimiento con daño
- kz Permeabilidad vertical
- k_{bar} Permeabilidad promedio
- μ Viscosidad
- μ_o Viscosidad del petróleo
- µw Viscosidad del agua
- **µ**od Viscosidad del petróleo libre de gas
- M Movilidad
- Q Tasa de flujo
- P Presión
- V Volumen del fluido
- r Radio
- re Radio del yacimiento
- r_s Radio de la zona con daño
- rw Radio del pozo
- C Comprensibilidad
- C_d Compresibilidad en términos de densidad
- Co Comprensibilidad del petróleo

- C_w Comprensibilidad del agua
- **C**_p Comprensibilidad de formación
- Ct Comprensibilidad total
- Ce Comprensibilidad equivalente
- **ρ** Densidad
- T Temperatura
- Volumen de petróleo
- V_w Volumen de petróleo
- **S**_o Saturación de petróleo
- Sw Saturación de agua
- V_p Volumen poral
- **Φ** Porosidad
- t Tiempo
- K Difusividad hidráulica del medio poroso
- P_i Presión inicial
- h Espesor del yacimiento
- β Factor volumétrico de formación
- **β**_o Factor volumétrico de formación del petróleo
- **β**_w Factor volumétrico de formación del agua
- β_{ob} Factor volumétrico de formación del petróleo en el punto de burbuja
- **β**t Factor volumétrico de formación total
- P_D Presión adimensional

- **r**_D Radio adimensional
- t_D Tiempo adimensional
- r_i Radio de investigación
- **C** Coeficiente de almacenamiento del pozo
- V_{wb} Volumen del pozo
- **C**_{wb} Comprensibilidad del fluido en el pozo
- C_D Compresibilidad adimensional del pozo
- Pwf Presión de fondo fluyente
- **q**t Flujo de fondo
- s Factor de piel o daño
- a Factor de conversión de unidades
- D_{pS} Caída de presión adicional por el daño
- r'w Radio de pozo ficticio
- m Pendiente
- P_{1h} Presión a t=1 hora
- Pws Presión durante la restauración
- Dt Tiempo de cierre
- t_p Tiempo de producción
- p' Tiempo extrapolada
- tpe Tiempo de presión equivalente
- Δpst Estabilización de la derivada
- **ω** Relación de almacenamiento

- λ Coeficiente de flujo interporoso
- **k**_m Permeabilidad matriz
- kf Permeabilidad de fisura
- **k** Relación de permeabilidad-espesor
- D Relación de difusividad
- **θ** Angulo de intersección de fallas

Ψ Función de spence

S_z Seudo factor de daño resultante de la penetración parcial en dirección vertical

 $\mathbf{S}_{\mathbf{x}}$ Seudo factor de daño resultante de la penetración parcial en dirección al eje x

- J Índice de productividad
- *P* Presión promedio del área de drenaje del pozo
- **C**_A Geometría del pozo-yacimiento
- L Longitud horizontal del pozo
- reh Radio de drenaje del pozo horizontal
- rev Radio de drenaje del pozo vertical
- **J**_h Índice de productividad de un pozo horizontal
- J_v Índice de productividad de un pozo vertical
- **Q**t Tasa de flujo total
- **Q**o Tasa de flujo de petróleo
- **Q**_w Tasa de flujo de agua
- **Q**_{max} Tasa de flujo máximo total

- **P**_b Presión en el punto de burbuja
- **R**_s Relación de gas en solución-petróleo
- R_{sb} Relación de gas en solución-petróleo en el punto de burbuja
- R_{si} Relación gas-petróleo Pi
- ht Espesor total del yacimiento
- h_n Espesor neto de la formación (punzados)
- γ_o Gravedad especifica del petróleo
- γ_g Gravedad especifica del gas
- API Grados API del petróleo
- **z** Factor de comprensibilidad del gas
- Psc Presión pseudocritica
- T_{sc} Temperatura pseudocritica

RESUMEN

En el análisis del comportamiento de la presión transitoria en pozos horizontales en el estudio tradicional supone que el yacimiento tiene una extensión infinita en el instante de obtener las ecuaciones que describen el comportamiento del flujo transitorio en un pozo horizontal. Tal asunción nos puede llevar a resultados erróneos.

Debido a la presencia de límites de fronteras en el yacimiento perturba la posible salida de los regímenes de flujo, se requiere que el sistema físico sea lo más confiable (datos acertados), es decir, el análisis deberá ser realizada sobre un volumen de drenaje con límites de fronteras cerradas, anisotrópicos, y el desplazamiento horizontal real y ubicación del pozo dentro del yacimiento.

El objeto principal de éste trabajo es presentar un modelo matemático hecho para examinar los "transientes" de presión en pozos horizontales en yacimientos cerrados y presentar un método para demostrar los datos adquiridos de las pruebas de declinación de presión (drawdown). Se demuestra que la longitud del pozo y de su sitio dentro del yacimiento son variables fundamentales, ya que debido a esto pueden acontecer cuatro regímenes de flujo, a conocer: Radial Temprano, Lineal Temprano, Seudo Radial Tardío y Lineal Tardío. El tiempo inicial y final de cada régimen de flujo es deducido, decidiendo e indicando los regímenes de flujo que resultan en cada caso. Los ejemplos de campo expuestos evidencian los efectos del almacenamiento y límites que pueden enmascarar los períodos de flujo radial, mostrando así la aplicabilidad del modelo desarrollado. **CAPITULO I**

1.PRINCIPIOS UTILIZADOS EN LA PRUEBA DE PRESIONES (FLUJOS EN MEDIOS POROSOS)

1.1. Introducción

Los principios estudiados a continuación y en los capítulos posteriores están considerados como un flujo monofásico de petróleo en un yacimiento.

La finalidad de una prueba de presión en un pozo es para obtener información sobre el comportamiento dinámico de un yacimiento.

Para la obtención de ésta información, los datos de la tasa de flujo de un pozo son variados, ésta depende de los diferenciales de presión que se genera en el yacimiento debido al tiempo de producción. Analizando y evaluando estos datos se obtendrá información sobre el yacimiento y el pozo.

Las presiones pueden ser medidas de las maneras siguientes:

- En pozos donde existen cambios en la tasa de flujo: éste es el método más utilizado en la pruebas de presión:
- O en diferentes pozos: Éste es el objetivo de las pruebas de interferencia.

Las leyes de la mecánica de los fluidos son usadas para poder estudiar las variaciones de presión.

1.2. Ley de Darcy

En 1856 Henri Darcy experimentó y publicó la ley para el flujo de fluidos a través de un medio poroso, la misma ley que llevaría su nombre, con ésta estableció la ecuación siguiente:

Figura 1.2.A: Ley de Darcy Fuente: Schlumberger_-_Introduction_to_Well_Testing_

$$Q = A \frac{k}{\mu} \frac{\Delta p}{L}$$

La Ley de Darcy es la más fundamental, cuya expresión está representada de forma diferencial y relaciona la tasa de flujo (q) a través de una superficie con la gradiente de presión $(\partial p/\partial x)$ a través de su sección. Para el flujo lineal:

$$-\frac{\partial p}{\partial x} = \frac{q\mu}{kA}$$

Si se consideran que el flujo a través de una sección cilíndrica en un medio isotrópico (asumidos por la mayor parte de los modelos que fueron usados en éste trabajo), y considerando la tasa de flujo positivo con rumbo al pozo (Producción):

Figura 1.2.B: Ley de Darcy para Flujo Radial Fuente: Schlumberger_-_Introduction_to_Well_Testing_

$$r\frac{\partial p}{\partial r} = \frac{q\mu}{2\pi kh}$$

La Ley de Darcy manifiesta que para la caída de presión entre 2 puntos, se debe considerar todos los parámetros para ser constante, como son:

- Proporcional para la densidad de la tasa de flujo (q/A)
- ✤ Y para la viscosidad del fluido (µ)
- Inversamente proporcional para la permeabilidad del yacimiento (k).

El valor final de la constante dependerá de las unidades.

1.3. Compresibilidad

Un factor simple de corrección puede ser añadido a la ley ideal del gas que describe el comportamiento de mezclas bajo las condiciones de un yacimiento de petróleo.

La compresibilidad de cualquier material sin identificar su estructura está definida por la variación relativa en el volumen del material por unidad con

relación a la variación de presión a una temperatura constante, la misma que está representada por la ecuación siguiente:

$$c = -\frac{1}{V} (\frac{\partial V}{\partial p})_T$$

Ésta ecuación también puede estar representada en función de la densidad:

$$c_e = \frac{1}{\rho} (\frac{\partial \rho}{\partial p})_T$$

Compresibilidad total de un yacimiento de petróleo:

En un yacimiento de petróleo ciertos componentes son compresibles:

- ✓ Petróleo
- ✓ Gas

Cuando existe una descompresión en el yacimiento, el fluido es producido de la manera siguiente:

✓ Por expansión característica de los fluidos:

Petróleo: $\Delta V_0 = -c_0 s_0 V_0 \Delta p$

Agua: $\Delta V_w = -c_w s_w V_w \Delta p$

Por reducción en el volumen poroso, Vp.

El volumen poroso es equilibrado debido a la presión del fluido y la presión litostática.

Cuando ocurre una descompresión en el yacimiento, la presión del fluido disminuye, mientras que la presión litostática permanece en forma constante. El volumen poroso disminuye, de tal forma que produce una producción general de fluídos:

$$\Delta V_p = -c_p V_p \Delta p$$

La compresibilidad total de una unidad de volumen poroso se obtiene mediante la sumatoria de todos los componentes compresibles dentro del yacimiento:

$$c_t = c_0 s_0 + c_g s_g + c_p$$

La capacidad compresible de una unidad de volumen de un medio poroso es igual a: ϕc_t

Compresibilidad equivalente:

El yacimiento está representado por:

- Una roca porosa incompresible con una porosidad de ϕs_0
- ✓ Un fluido de compresibilidad equivalente:

$$c_e = \frac{c_0 s_0 + c_g s_g + c_p}{s_0}$$

Magnitud de compresibilidad: Se tiene lo siguiente:

- ✓ Petróleo: de 3 a 10x10⁻⁶ psi⁻¹
- ✓ Agua: 3x10⁻⁶ psi⁻¹
- ✓ Espacios porosos: de 3 a 100x10⁻⁶ psi⁻¹

1.4. Ecuación de Difusividad

El flujo de fluido en un medio poroso es gobernado por la ecuación de difusividad. Para derivarlo en su forma más simple las suposiciones diversas y las simplificaciones tienen que hacerse:

- Depósito homogéneo e isotrópico
- Flujo del fluido solo horizontal, en una zona de espesor constante
- Fluido monofásico y ligeramente compresible
- Gradientes de presión pequeños, y está aplicada en la Ley de Darcy.
- Flujo transitorio de un fluido ligeramente compresible
- Fluido con viscosidad y compresibilidad constante
- Flujo isotérmico
- Propiedades del medio independiente de la presión
- Efectos de gravedad despreciables

La ecuación de difusividad está representada por la ecuación siguiente:

$$\nabla^2 p = (\frac{\emptyset \mu C t}{k}) \frac{\delta p}{\delta t}$$

Dónde:

$$\nabla^2 = \frac{\delta^2}{\delta x^2} + \frac{\delta^2}{\delta y^2} + \frac{\delta^2}{\delta z^2}$$

1.4.1. Solución de la ecuación de Difusividad

Si un pozo produce a tasa constante en un yacimiento, $q\beta$; El pozo tiene radio igual a cero; El depósito tiene presión uniforme p_i, antes del inicio de la producción; luego el pozo reduce drásticamente el área infinito (donde $\mathbf{p} \rightarrow \mathbf{pi}$ como $\mathbf{r} \rightarrow \infty$). En éstas condiciones, la solución queda representada por la ecuación.

$$p = p_i + 70.6 \frac{q\beta\mu}{\mathrm{kh}} E_i \left(\frac{-948\varphi\mu C_t r^2}{kt}\right)$$

Donde **p** es la presión, **r** la distancia del pozo en tiempo **t**, y la función **Ei** o exponencial integral.

$$E_i = -\int_x^\infty \left(\frac{e^{-u}}{u}\right) du$$

La solución de la Función Ei es una aproximación precisa para las soluciones exactas de la ecuación de difusividad (las soluciones con radio finito del pozo y radio finito de drenaje) para $3.79 \times 10^5 \frac{\phi \mu C_t r_w^2}{k} < t < 948 \frac{\phi \mu C_t r_e^2}{k}$, en tiempos pequeños, la asunción del tamaño de pozo cero (línea de origen) limita la exactitud de la ecuación; para los tiempos grandes, los límites del yacimiento afectan la distribución de presión, por lo que ya no es infinito activo.

Para la discusión, **x**, de la función Ei se valora menos de 0.01, la función Ei puede ser aproximada con error insignificante por eso:

$$E_i(-x) = \ln(1.781x)$$

Para x > 10, la función Ei es cero en aplicaciones prácticas del flujo a través de un soporte lógico, informático poroso. Para 0.01 < x < 10, las funciones Ei son determinadas por tablas.

1.5. Zona compresible

El flujo a un radio **r** de distancia desde el pozo a un tiempo **t** puede ser determinado a través de la ley de Darcy microscópica, expresada en flujo radial y determinada en la ecuación que describe el cambio de la presión:

$$q(r,t) = qBexp\left(-\frac{r^2}{4kt}\right)$$

Ésta figura muestra el perfil de flujo al tiempo t versus la distancia desde el pozo.

Fuente: Tesis Oscar Bravo - Luis Carrillo

El perfil de flujo puede ser considerado entre el pozo y la distancia del radio $\mathbf{r_1}$ la tasa de flujo ya que ésta tiene casi el mismo valor como ocurre cerca del pozo. La ley de Darcy es utilizada macroscópicamente en éstas áreas. Hay un flujo insignificante a través de las regiones localizadas más allá de la distancia del radio $\mathbf{r_2}$. La declinación de presión entre la distancia del radio $\mathbf{r_2}$ y una distancia infinita es despreciable.

Figura 1.5.B: Zona Comprensible Fuente: Tesis Oscar Bravo - Luis Carrillo}

A través del lugar localizado entre el pozo y el radio r_1 hay un flujo aproximado a $q\beta$.

Desde t a t' la caída de presión entre el pozo y t_1 es pequeña.

El área localizada más allá del radio r_2 no está inmersa en el flujo.

La declinación de presión entre el radio r_2 y una distancia infinita permanece insignificante.

Entre t y t' la declinación de presión entre una distancia infinita y el pozo es por lo tanto debido a lo que ocurre entre los radios r_1 y r_2 '.

En ésta área la compresibilidad del yacimiento, permite al flujo ir desde cero hasta **q**β. La cual área es llamada zona compresible.

La declinación de presión en el pozo desde la presión inicial es igual a la caída de presión entre una distancia infinita y el pozo.

La declinación de presión en el pozo refleja las propiedades del yacimiento en la zona compresible.

Al principio de la prueba la caída de presión refleja las propiedades del yacimiento en los alrededores del pozo. Después en la prueba alcanza zonas que están mucho más alejadas.

Una prueba de pozo permite lo siguiente:

- ✓ Caracterizar las propiedades promedias alejadas del pozo
- ✓ Detectar heterogeneidades de facies;
- ✓ Identificar barreras permeables.

1.6. Radio de investigación

El radio de investigación es el máximo radio en el cual un disturbio significativo de presión ha sido propagado. Su posición aproximada en cualquier tiempo dado puede calcularse usando la expresión

$$r_i = \sqrt{\frac{k_o t}{948\phi\mu_o c_t}}$$

Para la respuesta de la prueba de presión drawdown mostrados en Figura 1.6.A El efecto de proporción de movilidad, se representa gráficamente como el radio de investigación versus el tiempo (Figura 1.6.B): El radio de investigación versus el tiempo de flujo durante una prueba del drawdown).

Figura 1.6.A: Radio de Investigación Fuente: Well Testing and the Ideal Reservoir Model

Figura 1.6.B: Radio de Investigación Fuente: Well Testing and the Ideal Reservoir Model

Dos conclusiones importantes pueden ser interpretadas:

Primera, que si una prueba de pozo está dirigido a investigar una cierta distancia en el depósito, la duración requerida de la misma dependerá de los valores relativos de permeabilidad, viscosidad elocuente, porosidad, y compresibilidad total.

La segunda conclusión que se puede extraer para el sistema ideal del depósito es que el radio de investigación no depende de la tasa de
producción. La presión que el transiente activará hacia afuera para la misma distancia en el mismo período de tiempo, ya sea la tasa de producción es alta o baja. (La tasa afecta sólo la *magnitud* de la respuesta de presión).

Considerando las conclusiones anteriores, luego, no se necesita transmitir pruebas de flujo en tasas altas. Sin embargo, la tasa de producción debería ser constante a todo lo largo de la prueba y ser tal que exactamente podemos medir la respuesta de presión con las herramientas que se tienen disponibles. Luego, que el concepto de radio de investigación provea una guía para un diseño experimental valido.

1.7. Regímenes de flujo

Flujo Transiente o transitorio

Es el comportamiento de presión en un pozo que produce a una tasa constante., durante el tiempo de producción inicial o temprano de un pozo, el comportamiento de la presión es esencialmente el mismo que en el caso de un yacimiento infinito. Éste es el período de flujo transiente. La presión en el pozo se puede describir mediante la ecuación siguiente, para cubrir la mayoría de los casos prácticos:

$$P_{pozo} = P_i - \alpha [log(t) - \beta]$$

Donde α y β son constantes dependientes de las características del yacimiento, y *t* es el tiempo de producción. Durante el período transiente, al graficar la presión del pozo versus el logaritmo del tiempo de flujo, se obtiene una línea recta. En coordenadas cartesianas la presión del pozo declina rápidamente al principio y con menor rapidez a medida que avanza el tiempo.

Flujo Semi-estable

Si no existe flujo a través de los límites del área de drenaje a medida que el tiempo de producción transcurre, el comportamiento de la presión empezará a desviarse del comportamiento de un yacimiento infinito.

En éste tiempo llamado "transiente tardío", empezará a caer la presión a una tasa más alta que un yacimiento infinito. Ésta variación de presión corresponde a los puntos dentro de los límites del radio de drenaje. Finalmente, si la compresibilidad es pequeña y constante, la tasa con respecto a la caída de presión, llegará a ser igual en los límites del área de drenaje.

Éste es un período de estado semi-estable. Todas las presiones en el área de drenaje del pozo ahora declinan en la misma tasa en un tiempo determinado. La diferencia entre la presión promedio del yacimiento y la presión del pozo permanece constante durante éste periodo.

Flujo de Estado Estable

En el flujo de estado estable, a una tasa constante del pozo, la presión en diferentes puntos en el yacimiento permanecerá constante con el tiempo. Éste caso es poco común en yacimientos de petróleo. Los casos de mantenimiento de presión mediante la inyección de agua o gas son los que más se acercan al caso de flujo de estado estable.

1.8. Principio de superposición

Los modelos básicos de flujo están considerados con un solo pozo en el yacimiento, el cual produce una tasa constante de flujo, pero hay que considerar que en cada yacimiento existe más de un pozo que producen a tasas variables de flujo.

Con anterioridad se mencionó que la ecuación de difusión es una ecuación diferencial en derivadas parciales lineales; por lo que ésta da dos soluciones independientes, esto es; si $f_1(t)$ y $f_2(f)$ son soluciones independientes, también podemos considerar que la combinación de ambas también sería una solución.

$$a_1 f_1(t) + a_2 f_2(f) = f(t)$$

Existen dos tipos de superposiciones en espacio y tiempo

Superposición en espacio

Indica que cuando dos o más pozos están en producción en un yacimiento, la variación de presión considerada en diferentes puntos será la sumatoria de los cambios de presión determinados por cada uno de los pozos, como si cada uno de ellos estuviese produciendo solo en el yacimiento.

Considerando un yacimiento con una cantidad **n** de pozos como se ilustra en la figura la variación de presión estará representada por la ecuación siguiente:

$$\Delta p(0,t) = \sum_{i=1}^{n} q_i \Delta p_i(d_{i.}t)$$

(Ésta ecuación es válida en el caso de que los pozos empiecen a producir al mismo tiempo)

Figura 1.8.A: Superposición en espacio (Yacimiento con "**n**" pozos productores) Fuente: CIED PDVSA - Análisis de pruebas de presión

La ecuación que define la producción para cada uno de los pozos que contiene el yacimiento es:

$$\Delta p(0,t) = \sum_{i=1}^{n} q_i \Delta p_i (d_{i.}t - t_1)$$

Superposición en tiempo

La curva de producción (flujo) se puede aproximar de una forma escalonada, de tal forma que las características relevantes resaltan. Desde ésta consideración, se puede considerar que en **n** pozos localizados en un mismo yacimiento, el pozo en estudio empiece a producirá una tasa de **q**_i-**q**_{i-1} a partir de un tiempo t_i en éste caso, el tiempo efectivo de flujo del pozo de estudio **i** es **t-t**_i. La variación de presión en éste pozo en un tiempo **t** generado debido a la producción está representada por la ecuación siguiente:

$$\Delta p_w(q(t),t) = \sum_{i=1}^n (q_i - q_{i-1}) \Delta p_i(t - t_1) \qquad (\text{Para } t > t_n)$$

Figura 1.8.B: Superposición en tiempo Fuente: CIED PDVSA - Análisis de pruebas de presión

1.9. Efecto de almacenamiento de pozo

Cuándo un pozo es abierto para fluir desde la zona de interés hacia los tanques de almacenamiento, ésta se realiza desde la superficie.

Figura 1.9.A: Efectos de almacenamiento de pozo Fuente: Flopetrol Johnston, a división of schlumberger, 1983

La anterior producción viene de la descompresión de fluidos en el pozo y otros efectos, y no de fluidos en el yacimiento. Éste efecto es referido como descarga, es una forma de almacenamiento. Ésta relación se obtiene mediante la diferencia que existe en la tasa de flujo entre la superficie y el flujo en la cara de la arena o perforaciones.

Figura 1.9.B: Efectos de almacenamiento de pozo Fuente: Flopetrol Johnston, a división of schlumberger, 1983

Existe un retraso de tiempo antes de que la tasa de flujo del yacimiento iguale a la tasa en superficie. Es importante consideran ésta variación del tiempo cuando se interpretan los datos de presión /flujo recolectados durante una prueba de pozo.

Así como hay un retraso en la respuesta de tasa de flujo cuando se abre el pozo para una prueba de caída de presión, también hay un retraso cuando el pozo es cerrado en superficie para hacer una prueba de restauración de presión.

Figura 1.9.C: Efectos de almacenamiento de pozo Fuente: Flopetrol Johnston, a división of schlumberger, 1983

En éste caso el flujo en superficie se detiene instantáneamente, mientras el flujo en la cara de la arena gradualmente desciende hasta cero. Ésta condición es un segundo efecto de almacenamiento del pozo después del flujo. Luego el flujo también debe ser incorporado en la decodificación de datos de prueba de restauración de presión.

1.10. Factor de piel

Se considera un pozo ideal o virgen cuando no ha sufrido cambios en sus propiedades en la completación a hueco abierto, de ésta forma se considera que tiene un daño cero debido a que las permeabilidades absolutas y/o relativas del fluido del yacimiento no han sufrido alteraciones, lo cual no se produce en realidad.

La definición anterior de piel se considera con un daño cero, si la permeabilidad de la zona invadida o una piel con daño, \mathbf{k}_s , es igual a la k de permeabilidad del depósito, o si el radio de la zona invadida, r_s es igual al radio del pozo, \mathbf{r}_w .

Existe daño cuando las características de la cara del pozo son alteradas debido a la perforación, terminación o por procedimientos de estimulación. La invasión de fluidos de perforación generan la presencia de costras de lodo y cemento; la penetración parcial de la formación, y exceso de perforaciones por cañoneo son una cierta cantidad de factores que causan daño a la formación, y, más importantes, ocasionan una caída de presión adicional, localizada durante el flujo.

$$s = \left(\frac{k}{ks} - 1\right) ln \frac{rs}{rw}$$

El efecto superficial (cerca de pozo).

Figura 1.10.A: Factor de piel Fuente: Flopetrol Johnston, a división of schlumberger, 1983

Efectos de piel, positivo y negativo

Figura 1.10.B: Factor de piel Fuente: Flopetrol Johnston, a división of schlumberger, 1983

Por otra parte, las técnicas de estimulación de pozo, como fracturamiento hidráulico o acidificación, usualmente realzan las propiedades de la formación y aumentan la aptitud de flujo alrededor del pozo. De ésta manera que disminución en la caída de presión es diferente para una tasa dada (Figura 1.10.B) de flujo.

El factor de piel, es el término usado para referirse a la alteración de la permeabilidad que existe cerca del pozo. Este factor se cuantifica el daño, que tienen lugar a una caída de presión adicional en el pozo, pues a tasa dada de flujo el daño será positivo. Si el pozo ha sido estimulado y la caída de presión ha disminuido, el daño será negativo.

CAPÍTULO II

2. MÉTODOS PARA ANALIZAR PRUEBAS DE PRESIÓN EN POZOS VERTICALES

2.1. Introducción

Existen varios métodos para realizar pruebas de presión y se clasifican en dos grupos.

Métodos convencionales	Métodos utilizando curva tipo

Estos métodos son utilizados en diferentes tipos de formaciones para éste estudio, tantos en pozos verticales como horizontales.

Métodos convencionales

La interpretación de los métodos convencionales fue desarrollada en los años treinta y se mantuvo hasta los setenta.

Se debe considerar los periodos de flujo que se caracterizan durante las pruebas a realizarse.

Un régimen de flujo lineal o radial, etc.

La presión es analizada por una escala de tiempo que se adapta para obtener una línea recta en un régimen de flujo lineal.

Si se utiliza un método convencional en una prueba conduce a los parámetros siguientes:

- En muchos casos es difícil obtener un régimen de flujo que contengan una pendiente determinada en un gráfico de presión vs tiempo, la línea recta existe si su flujo está separado y no existe una de sus pendientes en su interpretación.
- Cuando se interpretan estos métodos se toman puntos localizados en una línea recta. Los cuales corresponden a la transición de dos

flujos utilizados. Esto indica que en una mínima porción de la data se utiliza en el análisis.

En varios casos es complejo graficar en una línea recta apropiada, debido a que en varias interpretaciones aparecen líneas rectas por éste motivo dichas líneas pertenecen a una tangente con una ligera inclinación

Métodos utilizando curva tipo

Estos métodos no llegaron a desarrollarse ampliamente .El primer set de curvas tipo utiliza parámetros adicionales, su alto grado de aceptación fue debido a la informática. Lo que indica que las presiones esperadas en pruebas en pozos se simulan según el tipo de yacimientos.

En la época de los ochenta, mediante la informática, se mejoraron los parámetros de la curva tipo que se toman en consideración en el mismo tiempo, las diferentes presiones determinaron una prueba. Éste análisis indicó que en los regímenes de flujo, la prueba permite diagnosticar los tipos de yacimientos y los pozos.

En 1970 Agarwal, Al-Hussainy y Ramey introdujeron el análisis de los períodos iniciales de flujo o restauración de presión mediante el Método de la Curva Tipo, para un pozo localizado en un yacimiento infinito con efecto de llene y efecto de daño. En el método de Curva Tipo el problema pozo-yacimiento se formula matemáticamente de acuerdo a las leyes físicas del flujo de fluido en medios porosos y aplicando determinadas condiciones iniciales y de contorno.

Las ecuaciones resultantes se resuelven mediante métodos de análisis matemático (transformada de la Laplace, funciones de Green, etc.) o mediante técnicas de análisis numérico (diferencias finitas, elementos finitos); luego, la solución se grafica en una lámina (Curva Tipo) y se tasa de ajustar los datos reales dibujados en una lámina semi-transparente (Gráfico de Campo) a la solución teórica.

McKinley en 1971 y Earlougher y Kersch en 1974 también han presentado modelos de Curva Tipo para el problema del pozo con efecto de llene y de daño. El modelo de Mc Kinley fue desarrollado para pruebas de restauración de presión que utiliza diferencias finitas. Fue desarrollado para un valor determinado de la constante de difusividad y para condiciones de contorno de presión constante en el límite exterior. Tal como fue formulado originalmente, no permite un análisis cuantitativo del efecto de daño. La idea de que todas las curvas convergen a tiempos muy pequeños a una sola curva, va a usarse posteriormente en Curvas Tipos actuales.

2.2. Regiones de tiempo en gráficos de prueba de presiones en pozos verticales

En las pruebas de buildup y drawdown la línea recta establecida ocurre en un tiempo determinado en éste tipo de pruebas. En estos casos las curvas son similares a los gráficos siguientes.

Figura 2.1: Regiones de tiempo Fuente: Análisis de curva tipo

Figura 2.2: Drawdown Fuente: Análisis de curva tipo

Para un mejor entendimiento del comportamiento de la porción no lineal de una curva se ha dividido en tres regímenes de tiempo.

REGIMENES DE TIEMPO TEMPRANO MEDIO TARDIO

Tiempo temprano. La presión está en una zona dañada cerca del pozo, los flujos del fluido almacenado distorsionan los datos de la prueba durante el transiente.

Tiempo medio. La presión dentro de la formación sin daño se ha movido. La línea recta cuya pendiente se relaciona con la permeabilidad efectiva usualmente aparece en el transiente, éste periodo referido a la región de tiempo medio se lo denomina línea recta semi-log.

Tiempo tardío. La presión en el transiente localiza los límites del yacimiento, existe interferencia entre pozos productores vecinos y cambios en la propiedad del yacimiento, la prueba drawdown se desvía de la recta establecida durante el tiempo medio.

2.3. Metodos de interpretación convencional

En un yacimiento infinito homogéneo se presentan dos tipos de flujo:

FLUJO EN YACIMIENTO INFINITOS HOMOGENEOS		
FLUJO CON EFECTO DE	FLUJO RADIAL PARA TODO	
ALMACENAMIENTO	EL YACIMIENTO	

CONDICIONES DE FLUJO		
TEST DRAWDOWN	TEST BUILUP	PRUEBAS PARA VARIOS CAUDALES

2.3.1. Test Drawdown

Estas pruebas se efectúan con el fin de obtener:

- 1. Permeabilidad promedio en el área de drene del pozo.
- 2. Volumen poroso del yacimiento.
- 3. Determinar heterogeneidades en el área de drenaje.
- 4. Área de drenaje del yacimiento.

En realidad, lo que se tiene es:

- > Transmisibilidad.
- > volumen poroso por compresibilidad total.

Para correr una prueba de declinación de presión, en general se siguen los pasos siguientes:

Se cierra el pozo por un periodo de tiempo suficiente para alcanzar la estabilización en todo el yacimiento (si no hay estabilización probablemente se requiera una prueba multitasa).

- Se baja la herramienta a un nivel por encima de las perforaciones (mínimo la herramienta debe tener dos sensores para efectos de control de calidad de los datos).
- > Abrir el pozo para producir a tasa constante y registrar continuamente la P_{wf} .
- La duración de una prueba de declinación pueden ser unas pocas horas o varios días, dependiendo de los objetivos de la prueba y las características de la formación.

2.3.1.1. Análisis de las Pruebas de Declinación de Presión para las Condiciones del Transiente

Durante el flujo a una tasa constante, el comportamiento de la presión de un pozo en un yacimiento infinito está dado por:

$$P_{wf} = P_i - \frac{70.6q\mu\beta_o}{kh} \left[-Ei\left(-\frac{\emptyset\mu cr_w^2}{0.00105kt}\right) + 2S\right]$$

Ésta expresión es también válida para describir el comportamiento de un pozo en los límites del yacimiento durante el periodo de flujo Transiente inicial, antes de que ocurran los efectos del límite.

La ecuación anterior puede ser representada por aproximaciones:

$$P_{wf} = P_i - \left(\frac{162,6q\beta_o\mu}{kh}\right) \times \left[\log(t) + \log\left(\frac{k}{\phi\mu c_t r_w^2}\right) - 3,23 + (0,869)S\right]$$

Ésta ecuación indica que durante el periodo de flujo Transiente de una prueba de Declinación de presión, la gráfica de Pwf VS. Log(t) debe ser lineal. El valor del producto kh puede ser obtenido de:

$$kh = \left(\frac{162, 6q\beta_o\mu}{m}\right)$$

Figura 2.3: Característica de un drawdown Fuente: Análisis de curva tipo

Al final del flujo en el periodo Transiente da comienzo al periodo del Transiente tardío, esto es cuando el efecto de frontera comienza, y puede ser observado en la gráfica 2.4. A éste tiempo, el flujo Transiente no prevalece. Físicamente, esto significa que la caída de presión debido a la producción ha sido sentida en los límites de drenaje del pozo y, como un resultado de depletación, el régimen está en el periodo transicional antes de alcanzar el estado semicontinuo. Éste intervalo de tiempo es referido al

periodo del Transiente tardío, donde el comportamiento de la presión no es, ni estado semicontinuo ni transiente.

Figura 2.4: Semi-log de presión drawdown Fuente: Flujos de medios porosos Gabriel Colmont

2.3.2. Buildup método de Horner

La grafica de HORNER siempre necesita más trabajo que el método de MHD a menos que se cumpla que $t_p < t_{pss}$. Éste método siempre se utiliza en pozos nuevos debido a su presión inicial. Cuando t_p es el doble de t_{pss} , se considera graficar t_{pss} en lugar de t_p en sistemas finitos, debido a que el grafico del método de HORNER, prolonga la recta semi- log al contrario del método grafico MHD, al utilizar el grafico de HORNER con la condición de t_{pss} en lugar de t_p minimiza el cálculo de errores en la obtención de la presión promedio, del método de HORNER se obtiene **kh**:

$$m = \frac{162.6q\mu\beta}{\mathrm{kh}}$$

$$kh = \frac{162.6q\mu\beta}{m}$$

Pozo en un yacimiento infinito

$$s = 1.1513 \left[\frac{p_{1h} - p_{wf}}{m} - \log\left(\frac{k}{\phi \mu c_t r_w^2}\right) + 3.2275 \right]$$

Pwf es la presión justo antes del cierre.

Figura 2.5: Comportamiento de la presión – grafico de Horner Fuente: Análisis moderno de presiones de pozos de Freddy Escobar

2.3.2.1. Interpretación

Las ecuaciones demuestran que la presión varía linealmente. Si la gráfica está representada por presión v_s el logaritmo de $t_p+\Delta t/\Delta t$; el efecto de

almacenamiento habrá determinado una línea de pendiente m, entonces se observara la ecuación siguiente:

$$m = \frac{162.6q\mu\beta}{\mathrm{kh}}$$

En una caída de presión la pendiente m es utilizada para calcular kh.

$$kh = \frac{162.6q\mu\beta}{m}$$

2.3.2.2. La presión extrapolada

En la prueba inicial, el flujo producido antes del cierre es despreciado al compararse con el petróleo original in-situ.

Las pruebas de restauración continuarán, la presión de fondo es igual **p**_i en el yacimiento.

P_i del yacimiento debe ser leído en un buildup.

$$\Delta t = \infty$$
; por lo tanto: $\frac{tp + \Delta t}{\Delta t} = 1$

A ésta presión se la denomina presión extrapolada **P**^{*}.

2.3.3. Buildup método MHD

Éste se basa en la asunción que el tiempo de producción es suficientemente largo para alcanzar el estado pseudoestable, luego es más representativo usar presión promedio que presión inicial. MDH se prefiere en pozos viejos o formaciones depletadas, por lo que se podría dificultar la obtención de la estabilización de la presión antes del cierre. El gráfico de Horner puede simplificarse si $\Delta t \ll tp$, luego:

$$t_{p+} \Delta t \cong tp$$
 luego;

$$\log\left(\frac{tp+\Delta t}{\Delta t}\right) \approx \log tp - \log\Delta t$$

Combinando las ecuaciones:

$$Pws = P * - m \log tp + m \log \Delta t$$

Si p*. - m log tp = *cte* = intercepto. entonces

$$pws = p_{1h} + \frac{162.6q\mu\beta}{\mathrm{kh}}\log\Delta t$$

$$m = \frac{162.6q\mu\beta}{\mathrm{kh}}$$

En el gráfico **MDH** no se obtiene un sentido matemático al extrapolar la recta de pendiente m hacia t_p para obtener el valor del daño **s**, ya que ésta se calcula con la ecuación para yacimiento infinito.

$$s = 1.1513 \left[\frac{p_{1h} - p_{wf}}{m} - \log\left(\frac{k}{\phi\mu c_t r_w^2}\right) + 3.2275\right]$$

Al inicio del comportamiento infinito se tiene:

$$\Delta t_{ssl} = (\frac{170000\mu C}{kh})e^{0.14s}$$

Figura 2.6: valores de Δt_{DA} en función t_p para el método de HORNER Fuente: Análisis moderno de presiones de pozos de Freddy Escobar

Figura 2.7: Valores para Δt_{DA} en función de t_{pDA} para el método MDH Fuente: Análisis moderno de presiones de pozos de Freddy Escobar

2.3.3.1. Interpretación

En éste método la presión cambia lentamente v_s él log Δt . Por lo que al graficar se puede observar una recta semilog con pendiente m cuando se allá concluido el efecto de almacenamiento.

$$m = \frac{162.6q\mu\beta}{\mathrm{kh}}$$

En otras unidades (métricas):

$$m = \frac{21.5q\mu\beta}{\mathrm{kh}}$$

2.3.4. Pruebas después de diferentes tasas de flujo

Después de una prueba a diferentes caudales se interpreta usando el principio de superposición de tasas de flujo:

$$p_i - p_{wf}(t) = \frac{\beta \mu}{2\pi kh} \sum_{i=1}^n (q_i - q_{i-1}) PD(t_i - t_{i-1})$$

Cuando termina el efecto de almacenamiento se dan las formulas siguientes:

$$p_i - p_{wf}(t_{n-1}) = \frac{\beta \mu}{4\pi \mathrm{kh}} \sum_{i=1}^n (q_i - q_{i-1}) \left[ln \frac{K(t_{n-1} - t_1)}{r_w^2} + 0.81 + 2s \right]$$

En el buildup el tiempo de un pozo cerrado está dado por:

Unidades US.

$$\begin{split} p_{ws}(\Delta t) &= \frac{162.6\beta\mu}{kh} \{ \sum_{i=1}^{n} (q_i - q_{i-1}) log \frac{t_{n-1} - t_{i-1}}{t_{n-1} - t_{i-1} + \Delta t} - (q_n - q_{n-1}) (log\Delta t) \\ &+ log \frac{k}{\varphi \mu c_t r_w^2} - 3.23 + 0.87s) \} \end{split}$$

El tiempo transcurrido (Δt) es el último cambio en la tasa de flujo.

2.3.4.1. Interpretación

En éste tipo de pruebas la presión cambia linealmente con respecto a la parte derecha de la ecuación anterior. Esto se conoce como función de superposición.

Los valores de presión medidos en el fondo del pozo se grafican vs la función de superposición, la línea recta con pendiente **m**, puede ser identificada una vez que el efecto de almacenamiento haya concluido.. Unidades US.

$$m = \frac{162.6\mu\beta}{\mathrm{kh}}$$

Sistema internacional S.I

$$m = \frac{21.5 \mu \beta}{kh}$$

$$m = \frac{1}{kh}$$

$$m = \frac{$$

Figura 2.8: Principio de superposición. Fuente: Well test interpretation Schlumberger

La pendiente es completamente independiente a la tasa de flujo. Ésta es una ventaja en la representación del método, los resultados obtenidos a diferentes tasas se comparan sobre la misma gráfica.

Para la obtención de una ecuación **m**, ésta tiene que ser dependiente de la tasa de flujo comparable. Con el método de horner y la superposición necesita ser dividida para su última tasa de flujo.

La pendiente obtenida, de la línea recta se utiliza para determinar kh.

$$kh = \frac{162.6\mu\beta}{m}$$

Para determinar **s** se considera el valor de la presión leída sobre la línea recta una hora después del último registro de la tasa de flujo.

$$s = 1.1513 \left[\frac{p_{1h} - p_{wf}(t_{n-1})}{(q_{n-1} - q_n)m} - \log\left(\frac{k}{\phi\mu c_t r_w^2}\right) + 3.2275 \right]$$

2.3.4.2. Presión extrapolada

La variación de una tasa de cierre da como lectura de presión un tiempo infinito.

El valor de función de superposición es cero, éste se utiliza para determinar un yacimiento extrapolado.

2.3.4.3. Simplificación del historial de las tasas de flujo

Tiempo equivalente

Dentro del análisis del buildup, el método más común y simple indica que al revisar los historiales de tasas de flujo de todos los caudales, se puede reducir a una sola tasa aplicando la interpretación del método de horner.

Se deben considerar los principios siguientes:

Ultima tasa de flujo	Tiempo de producción equivalente	
Σ^{n-1} (to to)		

$$t_{pe} = \frac{\sum_{i=1}^{n-1} q_i (t_i - t_{i-1})}{qn}$$

Para estimar una tasa de flujo equivalente no se debe utilizar en ningún caso el tiempo de producción real.

2.3.5. Radio de investigación de un buildup

Teóricamente el radio de investigación solamente depende de la restauración de presión para calcular este radio se aplican las ecuaciones siguientes:

Unidades US:

$$r_i = 0.032 \sqrt{\frac{k\Delta t}{\phi \mu C_t}}$$

Sistema internacional S.I

$$r_i = 0.038 \sqrt{\frac{k\Delta t}{\phi \mu C_t}}$$

El radio de investigación de un buildup está limitado por los medidores de presión. La presión de restauración es comparada con la duración del

drawdown, por lo tanto se debe tener en cuenta lecturas pequeñas de presión.

METODOS PARA INCREMENTAR LA INVESTIGACION PRACTICA	
DEL BUILDUP	
Medidores de presión más precisos	

Aumento de tasas de flujo para incrementar caudales de presión

Aumento de la duración del drawdown

2.4. Métodos de curva tipo

Las curvas tipo son representaciones gráficas de soluciones teóricas de las ecuaciones de flujo (Agarwal et al, 1970). El método consiste en encontrar, dentro de una familia de curvas la que mejor se aproximen con la respuesta real que se obtiene durante la prueba de presión. El cual se realiza en forma gráfica, superponiendo la data real con la curva teórica. Son soluciones gráficas en función de variables adimensionales, (p_D , t_D , r_D , C_D) están representadas por las ecuaciones siguientes:

$$\log(p_D) = \log(\Delta p) + \log(\frac{kh}{141.2q\beta\mu})$$

$$\log\left(\frac{t_D}{r_D^2}\right) = \log\left(\frac{0.0002637k}{\phi\mu C_1 r^2}\right) + \log(t)$$

MÉTODO DE CURVAS TIPO

Problema de Unicidad: Se pueden obtener dos o más respuestas a un mismo problema, debido al desconocimiento en el valor de **C**_D.

Figura 2.9: Métodos de curvas tipo. Fuente: Análisis moderno de presiones de pozos de Freddy Escobar.

2.5. La derivada

Según avances tecnológicos la capacidad de medición que se ha tenido en la última década permite ahora el cálculo de la derivada de presión. Como una herramienta de diagnóstico de flujo, ésta función está relacionada con la pendiente de la curva de presión en una gráfica semilogaritmica. Las ecuaciones para los diferentes modelos de flujo son:

MODELOS	ECUACIONES
Lineal	$t \ \Delta p' = (\frac{m_{if}}{2})\sqrt{t}$
Radial	$t \ \Delta p' = (\frac{m}{2.303})$
Esférico	$t \ \Delta p' = (\frac{m_{sph}}{2\sqrt{t}})$
Bilineal	$t \ \Delta p' = (\frac{m_{bf}}{4}) \sqrt[4]{t}$
Estacionario	$t \Delta p' = 0$
Pseudo-estacionario	$t \Delta p' = m * t$
Almacenamiento	$t \Delta p' = m_{ws} * t$

Tabla # 1. Tabla de ecuaciones de la derivada de regímenes de flujo Elaborado por: Edison Yagual Muñoz –Vicente Orellana Lucumi

Se puede observar que la función derivada se puede expresar como:

$$t \Delta p' = A t^n$$

Donde A es una constante que depende de la pendiente de la curva de presión en la gráfica de flujo, y n adquiere el valor adquirido para el flujo, lineal, radial, estacionario, bilinial, esférico, seudoestacionario (almacenamiento) respectivamente. De acuerdo a la ecuación anterior el parámetro que puede caracterizar el tiempo de flujo es n.

2.5.1. La representación de la derivada

La representación surge debido a los problemas de unicidad en los métodos anteriores (Curvas Tipo).

Bourdet et al (1983) proponen que los regímenes de flujo pueden ser mejor caracterizados si se grafica la derivada de la presión en lugar de la presión misma, en un gráfico log-log.

Las ventajas de éste método son:

- Heterogeneidades difíciles de ver con los métodos convencionales son amplificados con éste método.
- Regímenes de flujo presentan formas características bien diferenciadas.
- En un mismo gráfico se pueden observar fenómenos que bajo otros métodos requerirían dos o más gráficas.
- Bourdet definió la Derivada de la Presión Adimensional como la derivada de P_D respecto a t_D/C_D.

2.5.2. Interpretación directa por medio de la derivada

Para interpretar por medio de la derivada hay que tener en cuenta permeabilidad del yacimiento, el factor de piel y almacenamiento. Estos efectos pueden calcularse con la curva tipo y por la derivada, siempre que se haya logrado la estabilización de la derivada.

• Kh del yacimiento.

Se calcula una vez alcanzada la estabilización de la derivada.

Figura 2.10: Función derivada de presión para yacimiento homogéneo Fuente: Análisis moderno de presiones de pozos de Freddy Escobar.

La derivada expresada en términos adimensionales es igual 0.5.

Efecto de almacenamiento

Se puede calcular siempre y cuando se conozca el diferencial de presiones y el diferencial de tiempo, hay que tomar en cuenta que **m=1**.

$$\Delta p_1 = \frac{q\beta}{24C} \Delta t_1$$

Por lo tanto:

$$C = \frac{q\beta}{24C} \frac{\Delta t_1}{\Delta p_1}$$

• Factor de piel

Esto se calcula si las coordenadas en la línea recta de la gráfica semilog son conocidas:

$$s = 1.1513 \left[\frac{p_i - p_{wf(1h)}}{m} - \log\left(\frac{k}{\phi \mu c_t r_w^2}\right) + 3.2275\right]$$

2.5.3. Conclusión

Los métodos de la derivada como las curvas tipos dan grandes ventajas al permitir tomar pruebas completas de los pozos usando una sola curva.

Los diferentes tipos de flujo que se encuentran en diferentes fases en la derivada representan herramientas de análisis. La variación de presión en la derivada es igual a realizar una ampliación sobre los datos, una vez obtenida la ubicación que no será tomada en cuenta por la gráfica logarítmica.

Se debe considerar la complejidad de realizar cálculos manuales de un registro de presión utilizando la derivada.

En el mundo moderno es mucho más sencillo tomar lecturas de registros de presión por el método de la derivada empleando software disponible en la industria petrolera para obtener interpretaciones más exactas de las pruebas requeridas.

CAPITULO III

3. MODELO DE YACIMIENTOS.

3.1. Doble porosidad

Para obtener un yacimiento de doble porosidad se puede asumir que el yacimiento no es homogéneo .Pero en su estructura la roca matriz tiene características de un alto almacenamiento, baja permeabilidad y alta permeabilidad.

Debido a que no contienen en la matriz un sistema de fisuras naturales no producen eficientemente éste tipo de yacimientos, se los ha dividido en dos variables similares al medio homogéneo.

ω = es la relación de	λ = coeficiente de flujo interporoso
almacenamiento o la fracción de	relación de permeabilidades de las
gas o petróleo	fisuras

Figura 3.1: Modelo de yacimiento de doble porosidad. Fuente: Pressure transient testing. John Lee

Al producir un pozo el régimen de flujo inicial es radial debido al sistema de fisuras naturales existentes en el yacimiento, porque está produciendo por las fisuras y no existen cambios de presión dentro de la roca matriz. El flujo es literalmente rápido y es ocultado por el efecto de almacenamiento del yacimiento, lo cual será representado por el flujo radial infinito debido a la derivada de presión.

Cuando el sistema de fisuras empieza a producir un diferencial de presión se produce en la matriz a una presión p_i, y las fisuras en el yacimiento se encuentran a una presión p_{wf}.

La roca matriz empieza a producir proporcionalmente manteniendo la presión y la prueba de drawndown disminuye lentamente en forma breve creando una inclinación transicional en la derivada de presión.

Figura 3.2: Contribución de la matriz Fuente: Pressure transient testing. John Lee

En un sistema total el flujo radial se establece cuando existe un diferencial de presiones entre la roca matriz y el sistema de fracturas no es tan significativamente largo. Las respuestas del flujo radial son observadas en un medio equivalente homogéneo, este es el comportamiento de la segunda línea de la derivada de presión.

Esto toma lugar cuando la presión en el sistema de fisuras y la matriz son iguales, pero no se puede dar a lo largo del yacimiento, así no habrá producción dentro del sistema de fisuras.

3.1.1. Porosidad dual PSS (Régimen pseudos estable con flujo interporoso)

Para éste tipo de casos se debe asumir que la distribución de presión en la matriz es homogénea o uniforme, no existe caída de presión dentro de la roca matriz esto es toda la caída tiene lugar en la superficie de los bloques como una discontinuidad. Como se puede observar en la figura 3.3, si la constante de almacenamiento **(C)** es muy baja, hace posible ver el régimen de flujo radial en el sistema de fisuras en el periodo temprano de flujo.

Figura 3.3: Régimen pseudos estable con flujo interporoso. Fuente: Well test interpretation Schlumberger

Analizando la gráfica la constante de almacenamiento es muy baja, para éste caso es posible observar el flujo radial del sistema de fisuras a tiempos tempranos.

Con un valor de almacenamiento de 0.01 bbl/psi el régimen de flujo inicial que ya ha transcurrido será observado en una prueba real. Los datos reflejan una porosidad dual inmediatamente después de trascurrido el
efecto de almacenamiento y esto crea grandes problemas en un conjunto de datos.

Figura 3.4: Régimen pseudos estable con porosidad dual Fuente: Well test interpretation Schlumberger

La porosidad dual es analizada con dos parámetros:

La relación de almacenamiento

$$\omega = \frac{(\Phi vct)t}{(\Phi vct)f + (\Phi vct)m}$$

Ésta ecuación representa la fracción de petróleo en la fisura para valores muy pequeños de ω , corresponde a valores altos de hidrocarburos recuperables en las fisuras.

Coeficiente de flujo interporoso

$$\lambda = \alpha r w^2 \frac{km}{kf}$$

La ecuación representa la movilidad al fluir de la matriz y de las fisuras.

 α = es en función de la matriz.

 λ = determina el tiempo de transición.

La variable λ controla la velocidad de reacción de la matriz y para valores altos de λ la permeabilidad es muy alta, esto indica que la formación aportará hidrocarburos de una manera rápida en la formación, pero con valores de λ bajos sucede lo contrario, ya que el tiempo que toma el yacimiento en producir es muy lento.

3.1.2. Porosidad dual. (Régimen de flujo transiente con flujo interporoso)

Éste modelo asume que hay una gradiente de presión y posteriormente una difusividad dentro de los bloques de la matriz. Si el perfil de presión es importante entonces la forma de los bloques tiene que ser tomada en consideración y por ésta razón existen dos Pruebas de Presión.

Figura 3.5: (Régimen de flujo transiente con flujo interporoso) Fuente: Well test interpretation Schlumberger

Los modelos de solución para cada uno corresponde a diferentes geometrías del bloque matricial, los dos sin embargo son muy similares. Pruebas en laboratorios asumen una matriz de bloques rectangulares, los cuales fueron considerados como modelos de doble porosidad.

El modelo esférico define otra geometría en las que se definen las condiciones de borde para una solución matemática. Esto es difícil de visualizar en un yacimiento, pues el fluido en movimiento puede adoptar diferentes geometrías, en ese caso aparentemente la más aproximada podría ser la esférica.

Como se nota en el grafico anterior el flujo radial en el sistema fisurado tiene un corto período de vida y en la práctica casi no se lo ve. El símbolo ω define el tiempo de transición dentro del sistema de flujo éstable.

La doble porosidad es definida con dos parámetros:

La relación de almacenamiento

$$\omega = \frac{(\Phi vct)t}{(\Phi vct)f + (\Phi vct)m}$$

Donde ω determina la profundidad de la depresión alta o baja.

Coeficiente de flujo interporoso

$$\lambda = \alpha r w^2 \frac{km}{kf}$$

Ésta ecuación permite obtener el tiempo de la depresión.

 α = está en función de la matriz.

 λ = determina el tiempo de transición.

Para utilizar la curva tipo los valores de λ y ω se igualan

Ecuación para la primera y última curva	Ecuación de la curva β adjuntas en la transición
$\omega = \frac{(\Phi vct)t}{(\Phi vct)f}$	$\lambda = \frac{\beta(cde^2s)f + m}{\beta(e^{-2}s)}$

β representa la función geométrica estructural.

3.2. Doble permeabilidad

Cuando una capa del yacimiento no corresponde a la total, cada capa tiene sus propias propiedades, en cuyo caso el comportamiento total corresponde a la suma de los intervalos, se dice que se tiene doble permeabilidad.

Figura 3.6: Modelo de doble permeabilidad Fuente: Análisis de pruebas de presión internet

Los modelos de doble permeabilidad (2K) consisten en dos capas de diferentes permeabilidades, si cada una de ellas es perforada y puesta a

producir conjuntamente se producirá flujo cruzado, el cual será proporcional a la presión que se tenga en cada uno de ellas.

$$k = \frac{k_1 h_1}{k_1 h_1 + k_2 h_2}$$

La permeabilidad alta es considerada como una capa, por lo tanto el valor k de 1 no registra diferencial de presiones en tiempos tempranos. En todas las capas el sistema se comporta como un medio homogéneo sin flujo cruzado y en el caso de flujo radial infinito, con kh en las dos capas, la más permeable produce de forma inmediata, y la de menos permeabilidad tarda en producir, lo cual origina un diferencial de presiones entre las capas de flujo cruzado.

El yacimiento se comporta como un medio homogéneo con el kh almacenado entre sus capas.

Figura 3.7: Curvas para yacimientos de doble permeabilidad Fuente: Well test interpretation Schlumberger

La depresión heterogénea se deriva de tres parámetros:

Relación de almacenamiento de las capas $\omega = \frac{(\varphi cth)_1}{(\varphi cth)_1 + (\varphi cth)_2}$
Coeficiente de flujo entre capas $\lambda = lpha r w_2 rac{k_2 h_2}{k_1 h_1 + k_2 h_2}$
Constante de permeabilidad $k = \frac{k_1 h_1}{k_1 h_1 + k_2 h_2}$

K >1 Tiene influencia directa con la profundidad.

K=1 Lo mismo que 2Φ pss

K <1 Depresión de menor profundidad

Debido a los modelos de doble permeabilidad producen el mismo efecto que la depresión transicional, está representada en su totalidad por. ω y λ .

Si k = 1 la porosidad dual se encuentra en estado pseudocontinuo, esto implica $k_2h_2 = 0$, es decir que el petróleo o el gas se encuentran en la capa de baja permeabilidad.

3.3. Modelo radial compuesto

Los yacimientos con modelos de flujos radiales compuestos se establecen en dos regiones de diferentes movilidades o almacenamientos.

Figura 3.8: Modelo radial compuesto Fuente: Análisis moderno de pruebas de presión y datos de producción Dr. Heber Cinco

En el modelo radial compuesto existe una zona circular interna con un pozo en el centro y una zona infinita exterior.

$$M = \frac{\left(\frac{K}{\mu}\right)_1}{\left(\frac{K}{\mu}\right)_2} \qquad D = \frac{\left(\frac{K}{H\varphi\mu CT}\right)_1}{\left(\frac{K}{H\varphi\mu CT}\right)_2}$$

Estas zonas están definidas por sus propias características en el yacimiento homogéneo. Dichos parámetros cambian las propiedades de una zona determinada a otra con movilidad y su relación de difusividad **M** y **D** ya establecidas. No existen pérdidas de presiones en la interface que es la distancia \mathbf{r}_1 desdé el pozo.

En respuestas de flujo y de presiones los tiempos tempranos equivalen a la zona interna y a tiempos tardíos, guardan en relación con las propiedades exteriores.

Para éste caso los métodos IOR o de recuperación secundaria serán los más apropiados, ya que interesa mejorar la movilidad y se puede modificar la viscosidad del agua con polímeros y obtener una mejor recuperación de petróleo. Se observa que debido a éste proceso se produce una desaceleración del drawdown debido a alguna mejora en el mecanismo de inyección.

Estas medidas se las puede considerar como general o un límite circular cerrado, considerado como infinito viene a ser como un límite circular a presión contante.

3.4. Modelo compuesto lineal

Los yacimientos con pozos productores se localizan en un medio homogéneo, infinito en varias direcciones, donde las características del yacimiento cambian en un frente lineal, existen perdidas de presión en las interfaces, es homogéneo e in finito en todas sus propiedades en el otro lado de la interface.

Figura 3.9: Modelo composicional lineal Fuente: Análisis moderno de pruebas de presión y datos de producción Dr. Heber Cinco

La derivada establece que después de superar los efectos de almacenamiento, el pozo se considera como de flujo radial homogéneo en la primera zona.

La segunda respuesta homogénea ocurre una vez terminada la transición, a esto se lo denomina flujo semi-radial en dos partes del yacimiento

Figura 3.10: Curvas de respuestas inmediatas. Fuente: Well test interpretation Schlumberger

M y D son un modelo compuesto radial.

$$M = \frac{\left(\frac{K}{\mu}\right)_{1}}{\left(\frac{K}{\mu}\right)_{2}} \qquad D = \frac{\left(\frac{K}{H\varphi\mu CT}\right)_{1}}{\left(\frac{K}{H\varphi\mu CT}\right)_{2}}$$

Se estima un h constante a la derivada estabilizada en su primera parte, corresponde a k_1/μ_1 .

La segunda zona será movilidad promedio:

$$\frac{\frac{k_1}{\mathrm{m}\mu_1} + \frac{k_2}{\mathrm{m}\mu_2}}{2}$$

Figura 3.11: Curvas características en las zonas de estabilización. Fuente: Análisis de pruebas de presión internet

La movilidad declina en la segunda zona de estabilización, no puede ser el doble de la otra zona, en ese caso la discontinuidad lineal no se puede dar por una falla sellante $M=\alpha$ porque $k_2m\mu_2=0$.

Si la movilidad aumenta no existe límite bajo la segunda estabilización que tiende a **0** la presión de constante, cuando **M=0** indica que $k_2m\mu_2=\alpha$.

CAPÍTULO IV

4. MÉTODO PARA ANALIZAR PRUEBA DE PRESIONES EN POZOS HORIZONTALES

4.1. Diferencias con las pruebas de pozos verticales

- a) No se tiene extenso el sistema radial que está usualmente presente en un pozo vertical.
- b) Una mejor eficiencia de barrido y exposición a la inyección en pozos horizontales, debido a que muestra una mayor área de contacto.
- c) Incremento en el índice de productividad de 2 a 5 veces más que la de un pozo vertical.
- d) Incremento en el área de drenaje.
- e) Existen más regímenes de flujos posibles en pruebas de pozos horizontales con relación a los verticales
- f) Mejor conocimiento de la heterogeneidad del yacimiento
- g) Los efectos del almacenamiento pueden ser mucho más significativos en un pozo horizontal que en los verticales

4.2. Regímenes de flujo posible

Régimen Radial Temprano

El pozo al iniciar su producción desarrolla un flujo radial en el eje vertical perpendicular al pozo. Actúa como si fuese vertical "volteado" en un yacimiento infinito lateralmente con espesor representado por L. Éste régimen de flujo finaliza cuando el efecto del tope o cuando el flujo a través del final del pozo afecta la solución de presión.

Régimen Lineal Temprano

Si un pozo horizontal es lo suficientemente largo con relación al espesor del yacimiento se puede presentar un régimen de flujo lineal una vez que el diferencial de presión (Δ p) alcance los limites superiores e inferiores del yacimiento.

Régimen Pseudoradial Tardío en un plano horizontal

Si un pozo horizontal es suficientemente corto con relación al espesor del yacimiento se producirá un régimen de flujo pseudoradial a un tiempo tardío. El transiente de presión alcanza uno de los límites externos o sea el lado izquierdo o derecho del pozo.

Régimen Lineal Tardío

Esto se producirá cuando el transiente de presión alcance los extremos laterales y el flujo en ésta dirección se ha convertido en pseudo-continuo

Figure 2. Flow regimes for horizontal wells

Figura 6.4: Regímenes de flujo horizontal. Fuente: Instituto Colombiano del Petróleo (ICP) –ECOPETROL S.A

4.3. Método matemático

Si \mathbf{q}_0 representa la tasa de flujo del pozo por unidad de longitud en cada punto de la fuente, entonces, la ecuación que describe el flujo de petróleo en el medio poroso homogéneo no isotrópico es:

$$\frac{k_x \partial yP}{k_y \partial x^2} + \frac{\partial^2 P}{\partial y^2} + \frac{k_x \partial^2 P}{k_z \partial z^2} = \frac{\varphi \mu C_t}{k_y} \frac{\partial P}{\partial t}$$

Donde las condiciones iniciales y de fronteras están dadas por:

$$P(x, y, z, 0) = p_i$$

$$\log_{y \to \infty} P(x, y, z, t) = p_i$$

$$\log_{y \to \infty} (L_{zb} - L_{za})(L_{xl}L_{xd})\frac{\delta P}{\delta y} = 0, 0 \le x < L_{xd}$$

$$\log_{y \to \infty} (L_{zb} - L_{za})(L_{xl} - L_{xd})\frac{\delta P}{\delta y} = 0, 0 \le z < L_{za}, L_{xd} \le x < L_{xl}$$

$$\log_{y \to \infty} (L_{zb} - L_{za})(L_{xl} - L_{xd})\frac{\delta P}{\delta y} = -\frac{q\mu}{2k_y}, L_{za} \le z < L_{zb}, L_{xd} \le x < L_{xl}$$

$$\log_{y \to \infty} (L_{zb} - L_{za})(L_{xl} - L_{xd})\frac{\delta P}{\delta y} = 0, L_{za} \le z < h_z, L_{xd} \le x < L_{xl}$$

$$\log_{y \to \infty} (L_{zb} - L_{za})(L_{xl} - L_{xd})\frac{\delta P}{\delta y} = 0, L_{za} \le z < h_z, L_{xd} \le x < L_{xl}$$

$$\frac{\delta P}{\delta z} = 0, z = 0, z = h_z$$

$$\frac{\delta P}{\delta x} = 0, x = 0, x = h_x$$

4.3.1. Solución analítica para el drawdown

En 1987 Goode y Thambynayagam dieron a conocer la solución analítica para la respuesta de presión en el pozo.

$$p_{i} - p_{wf} = \frac{282.4q\beta_{o}\mu r'_{w}}{h_{x}h_{y}h_{z}} \left(\sqrt{\pi t_{D}} + \frac{h_{x}^{2}}{\pi^{2}v_{x}} \sum_{i=1}^{\infty} \frac{1}{n} \operatorname{erf}(v_{x}\pi n\sqrt{t_{D}}) E_{n}^{2} + \frac{h_{x}h_{z}}{L_{w}v_{z}\pi} \sum_{m=1}^{\infty} \frac{1}{m} \operatorname{erf}(v_{z}\pi m\sqrt{t_{D}}) E_{m} \cos(m\pi z_{e}) + \frac{h_{x}h_{z}}{2r'_{w}l_{w}} S_{m} \right)$$

Para las siguientes ecuaciones, S_m está representado como un factor de piel mecánico.

$$E_{n} = \frac{\left[\frac{sen\left(\frac{n\pi L_{xl}}{h_{x}}\right) - sen\left(\frac{n\pi L_{xd}}{h_{x}}\right)\right]}{nL_{w}}$$

$$E_{m} = \frac{\left[\frac{sen\left(\frac{m\pi(h_{s} + 2r'_{w})}{h_{z}}\right) - sen\left(\frac{m\pi(h_{s} - 2r'_{w})}{h_{z}}\right)\right]}{4mr'_{w}}$$

$$z_{e} = \frac{h_{s} + 1.47r'_{w}}{h_{z}}$$

$$t_{D} = \frac{0.0002637k_{v}t}{\varphi\mu C_{t}r'_{w}}$$

$$v_{x} = \frac{r'_{w}}{h_{x}}\sqrt{\frac{k_{x}}{k_{y}}}$$

$$v_{x} = \frac{r'_{w}}{h_{x}}\sqrt{\frac{k_{x}}{k_{y}}}$$

$$L_{w} = L_{xl} - L_{xd}$$

$$r'_{w} = \frac{L_{zb} - L_{za}}{4} = r_{w}\sqrt[4]{\frac{k_{x}}{k_{y}}}$$

La solución puede ser simplificada por varios intervalos de tiempos para los diferentes regímenes de flujo como se muestran a continuación.

a) Flujo radial de tiempo temprano

$$P_{wf} = P_i - \left(\frac{162,6q\beta_o\mu}{\sqrt{k_yk_z}L_w}\right) \left[\log\left(\frac{\sqrt{k_yk_z}t}{\varphi\mu C_t r'_w^2}\right) - 3,23 + (0,869)S_m\right]$$

b) Flujo lineal de tiempo intermedio

$$P_{wf} = P_i - \left(\frac{8.128q\beta_o}{h_z L_w}\right) \sqrt{\frac{\mu t}{k_y \varphi C_t}} + \frac{141.2q\beta_o \mu}{\sqrt{k_y k_z L_w}} (s_z + s_m)$$

Donde S_z representa un seudo factor de piel resultante de la penetración parcial en la dirección vertical. El seudo factor de piel está dado por la ecuación siguiente:

$$s_z = \frac{0.07985h_z}{r'_w} [\Psi(n_1) + \Psi(n_2) - \Psi(n_3) - \Psi(n_4)]$$

Donde Ψ es la función Spence representada por la ecuación siguiente:

$$\Psi(n) = \sum_{m=1}^{\infty} \frac{sen(mn)}{m^2} = -\int_{0}^{n} \ln\left(2sen\left(\frac{u}{2}\right)\right) du$$

c) Flujo radial de tiempo intermedio tardío (flujo radial horizontal)

$$P_{wf} = P_i - \left(\frac{162,6q\beta_o\mu}{\sqrt{k_y k_z} h_z}\right) \left[\log\left(\frac{k_x t}{\varphi \mu C_t L_w^2}\right) - 2.023 \right] + \frac{141.2q\beta_o\mu}{\sqrt{k_y k_z} L_w} (s_z + s_m)$$

d) Flujo lineal de tiempo tardío (flujo lineal estado Pseudocontinuo)

$$P_{wf} = P_i - \left(\frac{8.128q\beta_o}{h_x h_z}\right) \sqrt{\frac{\mu t}{k_y \varphi C_t}} + \frac{141.2q\beta_o \mu}{\sqrt{k_y k_z} L_w} (s_x + s_z + s_m)$$

Donde S_x es un Seudo factor de piel en la penetración en la dirección del eje x. éste seudo factor de piel está representada por la expresión siguiente:

$$s_{x} = \frac{0.6366 h_{x}^{2} L_{w}}{h_{z} \sqrt{\frac{k_{y}}{k_{x}}}} \sum_{n=1}^{\infty} \frac{E_{n}^{2}}{n}$$

4.3.2. Aproximaciones de tiempo para periodos de flujo

a) Flujo radial de tiempo temprano (Flujo radial vertical)

Éste periodo de flujo termina aproximadamente en:

$$t_{erf1} = \frac{190 h_s^{2.095} r_w^{-0.095} \varphi \mu C_t}{k_z}$$

b) Flujo lineal de tiempo intermedio

Éste periodo de flujo termina aproximadamente en:

$$t_{erf1} = \frac{20.8\varphi\mu L_w^2}{k_x}$$

Con ésta ecuación se puede identificar si el pozo es lo suficientemente grande o no con relación al espesor del yacimiento.

Si el tiempo calculado por la ecuación es mayor, la longitud será mayor que el espesor.

Si el tiempo calculado por la ecuación es menor, longitud será menor que el espesor.

c) Flujo radial de tiempo intermedio tardío (flujo radial horizontal)
 Éste periodo de flujo empezara aproximadamente en un tiempo:

$$t_{erf2} = \frac{1230\varphi\mu L_w^2}{k_x}$$

Para un yacimiento de ancho infinito el tiempo es calculado por la ecuación siguiente:

$$t_{erf2} = \frac{297(L_{xl} + L_{xd})L_w^{-0.095}\varphi\mu C_t}{k_x}$$

Si el tiempo que se ha calculado es mayor, esto indica que el pozo es extenso con relación a los límites laterales del yacimiento y el segundo periodo de flujo radial no se desarrolla

4.3.3. Solución analítica para buildup

La solución para la restauración de presión (buildup) es reemplazada por la condición de límite interno en la ecuación propuesta:

$$\log_{y \to \infty} (L_{zb} - L_{za})(L_{xl} - L_{xd}) \frac{\delta P}{\delta y} = 0$$
$$L_{za} \leq z < L_{zb}L_{xd} \leq x < L_{xl}$$

Las demás condiciones de límites de la ecuación no son alteradas, para la restauración de presión (buildup) en el pozo Goode y Thambynayagam dieron a conocer la ecuación siguiente:

$$p_{i} - p_{ws} = \frac{282.4 q\beta_{o} \mu r'_{w}}{h_{x} h_{y} h_{z}} \{ \sqrt{\pi} (\sqrt{t_{D}} - \sqrt{\Delta t_{D}}) + \frac{{h_{x}}^{2}}{\pi^{2} v_{x}} \sum_{i=1}^{\infty} \frac{1}{n} [erf(v_{x} \pi n \sqrt{t_{D}}) - erf(v_{x} \pi n \sqrt{\Delta t_{D}})] E_{n}^{2} + \frac{h_{x} h_{z}}{L_{w} v_{z} \pi} \sum_{m=1}^{\infty} \frac{1}{m} [erf(v_{z} \pi m \sqrt{t_{D}}) - erf(v_{z} \pi m \sqrt{\Delta t_{D}})] E_{m} \cos(m \pi z_{e}) \}$$

Dónde:

Δt= Cierre en el tiempo (t-t_p)

Para buildup son considerados dos escenarios:

El primer caso, es que el yacimiento está actuando como infinito $(h_x \rightarrow \infty)$

El segundo caso, es que el yacimiento actúa con un ancho finito, donde el período transiente de la presión, alcanzado todos los límites y el flujo lineal tardío culmina antes del cierre.

La ecuación puede ser establecida para cada uno de los diferentes periodos de flujos siguientes:

4.3.3.1. Flujo radial de tiempo temprano (flujo radial vertical)

Para el primer caso, cuando el yacimiento actúa como infinito ($h_x \rightarrow \infty$):

$$P_{ws} = P_i - \left(\frac{162, 6q\beta_o\mu}{\sqrt{k_yk_z}h_z}\right) \left[\log\left(\frac{t_p + \Delta t}{\Delta t}\right) + \Upsilon_1\right]$$

Donde:

$$Y_{1} = \frac{L_{w}}{h_{z}} \sqrt{\frac{k_{z}}{k_{x}}} \left[\log\left(\frac{k_{x}t}{\varphi \mu C_{t} L_{w}^{2}}\right) - 2.023 \right] - logt - \log\left(\frac{\sqrt{k_{y}k_{z}}}{\varphi \mu C_{t} L_{w}^{2}}\right) + 3.23 + 0.87s_{z}$$

Para el segundo caso, cuando el yacimiento actúa como espesor finito:

$$P_{ws} = P_i - \left(\frac{162,6q\beta_o\mu}{\sqrt{k_yk_z}L_w}\right) \left[\log\left(\frac{t_p + \Delta t}{\Delta t}\right) + \Upsilon_2\right]$$

Donde:

$$Y_{2} = \frac{0.05L_{w}}{h_{z}h_{x}} \sqrt{\frac{k_{z}t}{\varphi\mu C_{t}}} - \log\left(\frac{\sqrt{k_{y}k_{z}}t}{\varphi\mu C_{t}r_{w}^{2}}\right) + 3.23 + 0.87(s_{x} - s_{z})$$

Para el tiempo, t>> Δ t y log (t_p + Δ t) tiene un valor aproximado a una constante. Por lo tanto para las variable Δ t, $\gamma_1 e \gamma_2$ son considerados como constantes. En una gráfica de Horner se generara una recta cuya pendiente estará dada por la permeabilidad efectiva isotrópica en el plano y-z y la longitud horizontal del pozo

4.3.3.2. Flujo lineal de tiempo intermedio

Para el primer caso, cuando el yacimiento actúa como infinito ($h_x \to \infty$):

$$P_{ws} = P_i - \left(\frac{8.128q\beta_o}{k_z L_w}\right) \sqrt{\frac{\mu\Delta t}{\varphi k_y C_t}} + \Upsilon_3$$

Donde:

$$Y_3 = \frac{162,6q\beta_o\mu}{\sqrt{k_x k_y} h_z} \left[\log\left(\frac{k_x t}{\varphi \mu C_t L_w^2}\right) - 2.023 \right]$$

Para el segundo caso, cuando el yacimiento actúa como espesor finito:

$$P_{ws} = P_i - \left(\frac{8.128q\beta_o}{h_z L_w}\right) \sqrt{\frac{\mu}{k_y \varphi C_t}} \left(\sqrt{\Delta t} - \frac{L_w \sqrt{t}}{h_x}\right) + \frac{141.2q\beta_o \mu}{\sqrt{k_x k_y L_w}} (s_x)$$

Al generar una gráfica del Δp versus $\sqrt{\Delta t}$ será de forma lineal.

4.3.3.3. Flujo radial de tiempo intermedio tardío (flujo radial horizontal)

Para el primer caso, cuando el yacimiento actúa como infinito ($h_x \rightarrow \infty$):

$$P_{ws} = P_i - \left(\frac{162,6q\beta_o\mu}{\sqrt{k_x k_y} h_z}\right) \left[\log\left(\frac{t_p + \Delta t}{\Delta t}\right)\right]$$

Para el segundo caso, cuando el yacimiento actúa como espesor finito:

$$P_{ws} = P_i - \left(\frac{162, 6q\beta_o\mu}{\sqrt{k_x k_y} h_z}\right) \left[\log\left(\frac{t_p + \Delta t}{\Delta t}\right)\right] + \Upsilon_4$$

Donde:

$$Y_{4} = \frac{0.05L_{w}}{h_{x}} \sqrt{\frac{k_{z}t}{\varphi\mu C_{t}} - \log\left(\frac{k_{x}t}{\varphi\mu C_{t}{L_{w}}^{2}}\right) + 2.023 + 0.87s_{x}}$$

Hay que considerar que la parte inicial de la gráfica de Horner será lineal para $t_p >> \Delta t$, sin embargo, cuando dicha condición ya no se cumple, la data se desviara de la recta de Horner.

4.3.3.4. Flujo lineal de tiempo tardío (flujo lineal estado pseudocontinuo)

El flujo lineal no existirá para un caso de yacimiento infinito

Para un espesor finito está representado por la ecuación:

$$P_{ws} = P_i - \left(\frac{8.128q\beta_o}{h_x h_z}\right) \sqrt{\frac{\mu}{k_y \varphi C_t}} \left(\sqrt{t} - \sqrt{\Delta t}\right)$$

4.3.4. Factor de piel

4.3.4.1. Factores de piel

Si se considera cada régimen de flujo de manera separadas se podrá identificar diferentes tipos de factores mecánicos de daño

4.3.4.2. Factores de piel drawdown

Factores de piel (Drawdown)			
Tipo de flujo	Ecuación	Consideración	
Flujo radial de tiempo temprano (flujo radial vertical)	$s_m = 1.1513 \left[\frac{p_i - p_{wf(1h)}}{m_{1r}} - \log\left(\frac{\sqrt{k_y k_z}}{\phi \mu c_t r_w^2}\right) + 3.2275 \right]$	El valor de m _{1r} es el valor absoluto de la recta pendiente de la línea semilog y pwf (1h) se la puede leer en la recta semilog	
Flujo lineal de tiempo intermedio	$s_m = \frac{0.058}{h_z} \sqrt{\frac{k_z}{\varphi \mu C_t}} \left(\frac{p_i - p_{wf(0h)}}{m_{1l}}\right) - s_z$	m _{1t} es el valor de la pendiente positiva de la gráfica de la raíz cuadrada de tiempo y pwf _(0h) es la presión en t=0 obtenida extrapolando la recta hacia atrás a éste tiempo	
Flujo radial de tiempo intermedio tardío (flujo radial horizontal)	$s_{m} = \frac{1.1513L_{w}}{h_{z}} \sqrt{\frac{k_{z}}{k_{x}}} \left[\left(\frac{p_{i} - p_{wf(1h)}}{m_{2r}} \right) - \log \left(\frac{k_{x}}{\phi \mu c_{t} l_{w}^{2}} \right) + 2.023 - s_{z} \right]$	m_{2r} es el valor absoluto de la recta pendiente de la recta semilog y pwf _(1h) se la puede leer en la recta semilog	
Flujo lineal de tiempo tardío (flujo lineal éstado Pseudoconti nuo)	$s_{m} = \frac{0.058}{h_{x}h_{z}} \sqrt{\frac{k_{z}}{\varphi \mu C_{t}}} \left(\frac{p_{i} - p_{wf(0h)}}{m_{2l}}\right) - (s_{x} + s_{z})$	m_{2t} es el valor de la pendiente positiva de la gráfica de la raíz cuadrada de tiempo y pwf _(0h) es la presión en t=0 obtenida extrapolando la recta hacia atrás a éste tiempo	

Elaborado por: Autores Edison Yagual Muñoz -- Vicente Orellana Lucumi

Factores de piel (Buildup)		
Tipo de flujo	Ecuación	Consideración
Flujo radial de tiempo temprano (flujo radial vertical)	$s_{m} = 1.1513 \left[\frac{p_{ws(1h)} - p_{wf(tp)}}{m_{1r}} - \log\left(\frac{\sqrt{k_{y}k_{z}}}{\phi\mu c_{t}r_{w}^{2}}\right) + 3.2275 \right]$	m _{1r} es el valor absoluto de la pendiente de la recta de Horner y pws (1h) se puede leer en la recta de Horner
Flujo lineal de tiempo intermedio	$s_m = \frac{0.058}{h_z} \sqrt{\frac{k_z}{\varphi \mu C_t}} \left(\frac{p_{ws(0h)} - p_{wf(tp)}}{m_{1l}}\right) - s_z$	m_{1t} es el valor de la pendiente positiva de la gráfica de raíz cuadrada de tiempo y Pws _(0h) es la presión en $\Delta t=0$ que se obtiene extrapolando la recta hacia atrás a éste tiempo
Flujo radial de tiempo intermedio tardío (flujo radial horizontal)	$s_{m} = \frac{1.1513L_{w}}{h_{z}} \sqrt{\frac{k_{z}}{k_{x}}} \left[\left(\frac{p_{ws(1h)} - p_{wf(tp)}}{m_{2r}} \right) - \log \left(\frac{k_{x}}{\phi \mu c_{t} l_{w}^{2}} \right) + 2.023 - s_{z} \right]$	 m_{2r} es el valor absoluto de la pendiente de la recta de horner y pws_(1h) se puede leer en la recta de Horner
Flujo lineal de tiempo tardío (flujo lineal éstado Pseudocontinuo)	$s_m = \frac{0.058L_w}{h_x h_z} \sqrt{\frac{k_z}{\varphi \mu C_t}} \left(\frac{p_{ws(0h)} - p_{wf(tp)}}{m_{2l}}\right) - (s_x + s_z)$	m _{2t} es el valor de la pendiente positiva de la gráfica de raíz cuadrada de tiempo y pws _(0h) es la presión en Δt=0 que se obtiene extrapolando la recta hacia atrás a éste tiempo

4.3.4.3. Factores de piel buildup

Tabla # 3. Factores de piel Buildup

Elaborado por: Edison Yagual Muñoz - Vicente Orellana Lucumi

CAPITULO V

5. DESARROLLO DE PROBLEMAS DE

CAMPO

5.1. Introducción

Para la ejecución de éste trabajo se analizaran pruebas de presión en 4 pozos (2 verticales y 2 horizontales), los pozos evaluados son UPSE 01V y UPSE 02V verticales y UPSE 01H y UPSE 02H horizontales del Oriente Ecuatoriano, las pruebas que se realizaron son de restauración de presión (buildup) y de caída de presión (drawdow); para la cuantificación de los registros existentes en los yacimientos pi, luego de cuantificar el daño de formación o estimulación S.

Los valores de permeabilidades horizontales kh y verticales kv, para evaluar las formaciones y cuantificar la capacidad de cada uno de los pozos analizados.

El análisis se realizó con el Software Ecrin v4.02.04.(Saphir).

5.2. Análisis de la prueba de réstauración de presión del pozo vertical UPSE 1V

5.2.1. Características de la prueba de presión del pozo UPSE 01V

El análisis de restauración de presión (BUILD UP) corresponde a la arena T del pozo UPSE 01V que tiene un frente productor abierto de 10160-10176 (Un espesor de 16 ft).

Este pozo tubo una producción de 1546 Bbl/Día con un corte de agua (BSW) del 12% con un petróleo de 27.4 grados API. A continuación se presentan diferentes etapas que fueron desarrolladas durante el análisis de producción y posterior a esto la restauración de presión.

TIEMPOS (Hrs)		ETAPAS
t1	5.15	Abren el pozo
t2	64,904	Cierran el pozo
t3	92,4311	Fin de la prueba

Tabla # 4. Tabla de eventos durante la prueba de producción y restauración de presión (BUILDUP) del pozo vertical UPSE 01V

Elaborado por: Edison Yagual Muñoz - Vicente Orellana Lucumi

Esta grafica de prueba de restauración de presión indica que la prueba de producción la efectuaron en 64.389 horas y un periodo de cierre de 27.5271 horas, tal como se aprecia en la figura 5.2.1.

History plot (Pressure [psia], Liquid Rate [STB/D] vs Time [hr])

Figura 5.2.1: Datos de presiones vs tiempo del pozo vertical UPSE 01V Fuente: Software Ecrin v4.02.04.(Saphir). Elaborado por: Edison Yagual Muñoz –Vicente Orellana Lucumi Los datos del registro de presión se obtuvieron con el sensor Zi- 5630-01 que fue asentado en el No-Go a 8656 ft. Éste registro del yacimiento "A" será reportado a la mitad de las perforaciones (mp) estimada a 9407 ft TVD.

En el proceso de análisis se usaron los datos básicos del yacimiento que fueron suministrados por el departamento de Ingeniería de Petróleos de la empresa operadora del campo y se han realizado evaluaciones de los datos de análisis PVT: P_b , R_s , B_o a partir de la correlación de LASATER y μ_{o} , a partir de la correlación de Beggs et al, aplicando el software de Interpretación Ecrin v4.02.04.(saphir).

5.2.2. Datos básicos para la evaluación

A continuación se tienen diferentes tablas con toda la información básica para la evaluación del pozo UPSE 01V.

Qo	=	1360	BPPD
Qw	=	186	BAPD
Qt	=	1546	BFPD
BSW	=	12	%
API	=	27.4	

Datos de la prueba de producción

Tabla # 5. Datos de la prueba de producción del pozo vertical UPSE 01V Elaborado por: Edison Yagual Muñoz –Vicente Orellana Lucumi

Parámetros del estrato

Hn	=	40	Ft
Φ	=	16	%
Rw	=	0.59	Ft
Ту	=	215	° F

Tabla # 6. Datos de parámetros de estrato del pozo vertical UPSE 01V Elaborado por: Edison Yagual Muñoz –Vicente Orellana Lucumi

Parámetros del fluido

Во	= 1.1456	By/Bn
Bw	= 1.0397	By/Bn
Rs	= 218	Scf/Bbl
Uo	= 1.8	Cps
Ct	= 1.2318 e-	5 Psi -1
GOF	R= 233	Scf/Bbl
γgas	s = 1.1821	

Tabla # 7. Datos de parámetros de fluido del pozo vertical UPSE 01V Elaborado por: Edison Yagual Muñoz –Vicente Orellana Lucumi

5.2.3. Interpretación

La gráfica 5.2.3A corresponde a la derivada de presión en la que se puede ver que existen tres etapas, la primera que corresponde al efecto de almacenamiento, la segunda al flujo en el yacimiento, y la tercera muestra la presencia del efecto límite:

La primera zona se considera como una constante debido al efecto de almacenamiento

La segunda se ajusta a un flujo de tipo radial en el pozo lo que muestra una estabilización (m=0).

La tercera zona de la gráfica presenta el efecto límite, que para ésta situación singular tiende a formar una barrera cercana debido a la presencia de un canal.

Log-Log plot: dp and dp' [psi] vs dt [hr]

Figura: Figura 5.2.3.A: Datos de la derivada de presión vs tiempo equivalente del pozo UPSE 01V Fuente: Software Ecrin v4.02.04.(Saphir). Elaborado por: Edison Yagual Muñoz –Vicente Orellana Lucumi En la siguiente grafica 5.3.2B se presenta la curva semilogarítmica, en la que se puede identificar una pendiente correspondiente al flujo radial, además se puede ver en la gráfica que tiende a decaer su pendiente y esto ocurre debido al efecto de límite.

Horner plot: p [psi] vs log(tp+dt)-log(dt)

Figura 5.2.3B Presión vs tiempo de Horner del pozo UPSE 01V Fuente: Software Ecrin v4.02.04.(Saphir). Elaborado por: Edison Yagual Muñoz –Vicente Orellana Lucumi

i

5.2.4. Resultados de la Interpretación

Los resultados obtenidos con el uso del software al ajuste de las curvas, tanto de la semilogarítmica y de la derivada de la presión, considerando los parámetros del yacimiento se registraron en las siguientes tablas:

Método de horner

Pendiente (m)	-40.35psi
Permeabilidad (k)	309 md
k.h	309 md. Ft
S	5.26
P*(@ 1hr)	2735.63 psia
Intercepto	2804.25 psia

Tabla # 8. Resultados de interpretación del método de Horner del pozo vertical UPSE 01V Elaborado por: Edison Yagual Muñoz –Vicente Orellana Lucumi

Método de la derivada

T match	673(hr)-1
P match	0.0299(psia)-1
К	297md
S	5.82
Kh	11900 md-ft
Pi	2798psi

Tabla # 9. Resultados de interpretación del método de la derivada del pozo vertical UPSE 01V Elaborado por: Edison Yagual Muñoz –Vicente Orellana Lucumi

Modelos de flujo:

Almacenamiento	Efecto de llenado constante
Flujo del yacimiento	Flujo radial homogéneo
Limites	Por medio de un canal

Tabla # 10. Resultados de interpretación modelos de flujo del pozo vertical UPSE 01V Elaborado por: Autores Edison Yagual Muñoz –Vicente Orellana Lucumi

5.3. Análisis de la prueba de réstauración de presión del pozo horizontal UPSE-01H

5.3.1. Características de la prueba de presión del pozo UPSE-01H.

El análisis correspondiente a la zona de pago "A" del pozo UPSE-01H, con sección horizontal Lw=427 ft con sus intervalos disparados a 10346-10773 (427 pies) MD a 9382-9431 (49 pies) TVD.

La producción de éste pozo fue de 1200 bbl/dia con una producción de agua BSW de 15 % y un petróleo de 26 grados API. Se presentan en algunos eventos que tuvieron lugar durante la pruebas de producción y posterior prueba de restauración de presión.

TIEMPOS (Hrs)		Fases
t1	1.735	Se abre el pozo
t2	60,832	Se cierra el pozo
t3	79,9069	Fin de prueba

Tabla # 11. Eventos durante la prueba de producción y restauración de presión (BUILDUP) del pozo horizontal UPSE 01H

Elaborado por: Autores Edison Yagual Muñoz – Vicente Orellana Lucumi

La grafica de la prueba de restauración indica que la prueba de producción tuvo una duración de 59.097 horas y un periodo de cierre de 19,0749 horas, tal como se muestra en la figura 5.3.1.

History plot (Pressure [psia], Liquid Rate [STB/D] vs Time [hr])

Figura 5.3.1: Datos de presiones vs tiempo del pozo horizontal UPSE 01H Fuente: Software Ecrin v4.02.04.(Saphir). Elaborado por: Edison Yagual Muñoz –Vicente Orellana Lucumi Para el registro de presión se utilizó el sensor Zi-1012 que fue ubicado en el No-Go asentado a 10032 ft. Estos valores de presión del yacimiento "B" fueron reportados a la mitad de las perforaciones (mp) estimadas a 10242 ft.

En el proceso de análisis se usaron los datos básicos del yacimiento que fueron suministrados por la empresa operadora del campo y se han realizado evaluaciones de los datos de análisis PVT: P_b , R_s , B_o a partir de la correlación de LASATER y μ_o a partir de Beggs et al, aplicando el software de Interpretación Ecrin v4.02.04.(saphir).

5.3.2. Datos Básicos para la Evaluación

Se presentan diferentes tablas con toda la información.

Datos c	de la	prueba	de	producción:
---------	-------	--------	----	-------------

Qo	1020 BPPD
Qw	180 BAPP
Qt	1200 BFPD
BSW	15 %
API	26

Tabla # 12. Datos de la prueba de producción del pozo horizontal UPSE 01H Elaborado por: Autores Edison Yagual Muñoz –Vicente Orellana Lucumi

Parámetros del estrato:

Hn	60 ft	
Ø	14 %	
Rw	0.29 ft	
Ту	234 °F	

Tabla # 13. Datos de parámetros de estrato del pozo horizontal UPSE 01H Elaborado por: Autores Edison Yagual Muñoz –Vicente Orellana Lucumi Parámetros del fluido:

Во	1.15 rb/stb
Bw	1.10 rb/stb
Rs	206 scf/bbl
μο	2.0078 cps
Ct	1.35 e-5 psi-1
BT	1.13 rb/stb
Ту	200 ⁰ F

Tabla # 14. Datos de parámetros de fluido del pozo horizontal UPSE 01H Elaborado por: Autores Edison Yagual Muñoz –Vicente Orellana Lucumi

5.3.3. Interpretación.

La gráfica 5.3.3A siguiente que corresponde a la derivada, allí se puede ver que tiene tres etapas, la primera corresponde al efecto de almacenamiento, la segunda indica el flujo en el yacimiento, y la última señala la presencia del efecto límite por la presencia de un canal:

La primera zona se considera constante debido al almacenamiento

La segunda zona corresponde a un flujo speudoestable en el pozo.

La tercera zona de la gráfica presenta el efecto límite a un tiempo final debido a la presencia de un canal

Log-Log plot: dp and dp' [psi] vs dt [hr]

Figura 5.3.3.A: Datos de la derivada de presión vs tiempo equivalente del pozo horizontal UPSE 01H Fuente: Software Ecrin v4.02.04.(Saphir). Elaborado por: Edison Yagual Muñoz –Vicente Orellana Lucumi

Se muestra la curva semilogarítmica, en la cual se identifica una pendiente correspondiente al flujo speudoestable y cómo se puede apreciar en la gráfica 5.3.3B la curva tiende a declinar su pendiente, debido al efecto límite por la presencia de un canal.

Horner plot: p [psi] vs log(tp+dt)-log(dt)

Figura 5.3.3.B: Presión vs tiempo de Horner del pozo horizontal UPSE 01H Fuente: Software Ecrin v4.02.04.(Saphir). Elaborado por: Edison Yagual Muñoz –Vicente Orellana Lucumi

5.3.4. Resultados de la Interpretación

Los resultados mediante el uso del software al ajuste de las curvas, tanto de la semilogarítmica y de la derivada, se obtuvieron las tablas siguientes en consideración a los parámetros del yacimiento:

Método de horner

Permeabilidad (k)	781 md
K.H	46800 md,ft
S	-1.81
P*(@1hr)	1384.34psi
Pendiente	-9.444476 psi

Tabla # 15. Resultados de interpretación del método de Horner del pozo horizontal UPSE 01H Elaborado por: Autores Edison Yagual Muñoz –Vicente Orellana Lucumi

Método de la derivada

Cs	0.0261 bbl/psi
К	55 md
S	0.01
Pi	1445.14 psi

Tabla # 16. Resultados de interpretación del método de la derivada del pozo horizontal UPSE 01H Elaborado por: Autores Edison Yagual Muñoz –Vicente Orellana Lucumi

Modelos de flujo:

Almacenamiento	Efecto de llenado constante
Flujo del yacimiento	Flujo Speudoestables con doble porosidad
Limites	Presencia de canal

Tabla # 17. Resultados de interpretación modelos de flujo del pozo Horizontal UPSE 01H Elaborado por: Autores Edison Yagual Muñoz –Vicente Orellana Lucumi

5.4. Análisis de la prueba de réstauración de presión del pozo vertical UPSE 02V

5.4.1. Características de la prueba de presión del pozo UPSE 02V

El análisis de restauración de presión (BUILD UP) corresponde a la arena T del pozo UPSE 02V que tiene un frente productor abierto de 10160-10176 (un espesor de 16 ft).

Éste pozo tubo una producción de 1560 Bbl/Día con un corte de agua (BSW) del 12.48% con un petróleo de 27.4 grados API. A continuación se presentan diferentes etapas que fueron desarrolladas durante el análisis de producción y posterior a esto la restauración.

TIEMPO	DS (Hrs)	Fases
t1	6,6244	Abren el pozo
t2	69,9217	Cierran el pozo
t3	103,765	Fin de la prueba

Tabla # 18. Tabla de eventos durante la prueba de producción y restauración de presión (BUILDUP) del pozo vertical UPSE 02V

Elaborado por: Autores Edison Yagual Muñoz -- Vicente Orellana Lucumi

La grafica de prueba de restauración de presión indica que la prueba de producción duro un tiempo de 63,2973 horas y el periodo de cierre 33,8433, horas tal como se aprecia en la figura 5.4.1.

History plot (Pressure [psia], Liquid Rate [STB/D] vs Time [hr])

Figura 5.4.1: Datos de presiones vs tiempo del pozo vertical UPSE 02V Fuente: Software Ecrin v4.02.04.(Saphir). Elaborado por: Edison Yagual Muñoz –Vicente Orellana Lucumi Para el registro de presión se empleó el sensor Zi- 5651-01, que fue asentado en el No-Go a 8696 ft. Éste registro de presión del yacimiento "A" fue reportado a la mitad de las perforaciones (mp) estimada a 9567 ft TVD.

En el proceso de análisis se usaron los datos básicos del yacimiento que fueron suministrados por la empresa operadora y se han realizado determinaciones de los datos de análisis PVT: P_b , R_s , B_o a partir de la correlación de LASATER y μ_o a partir de Beggs et al, aplicando el software de Interpretación Ecrin v4.02.04.(saphir).

5.4.2. Datos básicos para la evaluación

A continuación se tienen diferentes tablas con toda la información básica para la evaluación del pozo vertical UPSE 02V.

Datos de la prueba de producción

Qo =	1435	BPPD
Qw =	125	BAPD
Qt =	1560	BFPD
BSW=	12.48	%
API =	27.4	

Tabla # 19. Datos de la prueba de producción del pozo vertical UPSE 02V Elaborado por: Autores Edison Yagual Muñoz –Vicente Orellana Lucumi

Parámetros del estrato

Hn	= 46	Ft
Φ	= 17.8	%
Rw	= 0.51	Ft
Ту	= 225	° F

Tabla # 20. Datos de parámetros de estrato del pozo vertical UPSE 02V Elaborado por: Autores Edison Yagual Muñoz –Vicente Orellana Lucumi

Parámetros del fluido

Во	= 1.1342	By/Bn
Bw	= 1.0271	By/Bn
Rs	= 216	Scf/Bbl
Uo	= 1.6	Cps
Ct	= 1.8767 e	-5 Psi -1
GOF	R= 230	Scf/Bbl
γgas	= 1.1821	

Tabla # 21. Datos de parámetros de fluido del pozo vertical UPSE 02V Elaborado por: Autores Edison Yagual Muñoz –Vicente Orellana Lucumi

5.4.3. Interpretación

La gráfica 5.4.3A corresponde a la derivada de presión en la que se puede ver que existen tres etapas, la primera que corresponde al efecto de almacenamiento, la segunda muestra el flujo en el yacimiento, y la tercera muestra la presencia del efecto límite: La primera se considera como una constante debido al efecto de almacenamiento

La segunda se ajusta a un flujo de tipo radial en el pozo, lo que muestra una estabilización (m=0).

La tercera zona de la gráfica presenta el efecto límite, que para ésta situación singular tiende a formar una barrera cercana debido a la presencia de un canal.

Log-Log plot: dp and dp' [psi] vs dt [hr]

Figura 5.4.3.A: Datos de la derivada de presión vs tiempo equivalente del pozo vertical UPSE 02V Fuente: Software Ecrin v4.02.04.(Saphir). Elaborado por: Edison Yagual Muñoz –Vicente Orellana Lucumi En la siguiente grafica 5.4.3B se presenta la curva semilogarítmica, en la que podemos identificar una pendiente correspondiente al flujo radial además se puede ver en la gráfica que la curva tiende a decaer su pendiente y esto ocurre debido al efecto de límite.

Horner plot: p [psi] vs log(tp+dt)-log(dt)

Figura 5.4.3B Presión vs tiempo de Horner del pozo vertical UPSE 02V Fuente: Software Ecrin v4.02.04.(Saphir). Elaborado por: Edison Yagual Muñoz –Vicente Orellana Lucumi

5.4.4. Resultados de la Interpretación

Los resultados obtenidos con el uso del software al ajuste de las curvas, tanto de la semilogarítmica y de la derivada de la presión, considerando los parámetros del yacimiento se registraron las tablas siguientes:

Método de horner

Pendiente (m)	-379.389 psi
Permeabilidad (k)	25.7 md
k.h	1180 ft
S	0.0218 md
P*(@ 1hr)	2442.02 psia

Tabla # 22. Resultados de interpretación del método de Horner del pozo vertical UPSE 02V Elaborado por: Autores Edison Yagual Muñoz –Vicente Orellana Lucumi

Método de la derivada

T match	127(hr)-1
P match	0.00158(psia)-1
K	13.4 md
S	-1.93
Kh	616 md-ft
Pi	3876.26 psi

Tabla # 23. Resultados de interpretación del método de la derivada del pozo vertical UPSE 02V Elaborado por: Autores Edison Yagual Muñoz –Vicente Orellana Lucumi

Modelos de flujo:

Almacenamiento	Efecto de llenado constante
Flujo del yacimiento	Flujo radial homogéneo
Limites	Fallas paralelas o canal

Tabla # 24. Resultados de interpretación modelos de flujo del pozo vertical UPSE 02V Elaborado por: Autores Edison Yagual Muñoz –Vicente Orellana Lucumi

5.5. Análisis de la prueba de réstauración de presión del pozo horizontal UPSE-02H

5.5.1. Características de la prueba de presión del pozo UPSE-02H.

El análisis correspondiente a la zona de pago "A" del pozo UPSE-02H, con sección horizontal Lw=427 ft con sus intervalos disparados a 10346-10773 (427 pies) MD a 9382-9431 (49 pies) TVD.

La producción de éste pozo fue de 1200 bbl/dia con una producción de agua BSW de 15 % y un petróleo de 26 grados API. Se tienen algunos eventos que tuvieron lugar durante la pruebas de producción y posterior prueba de restauración.

TIEMPOS (Hrs)		Fases	
t1	0	Abren el pozo	
t2	23,832	Cierran el pozo	
t3	41,9069	Fin de la prueba	

Tabla # 25. Eventos durante la prueba de producción y restauración de presión (BUILDUP) del pozo horizontal UPSE 02H

Elaborado por: Autores Edison Yagual Muñoz -- Vicente Orellana Lucumi

La grafica 5.5.1 de la prueba de restauración indica que la prueba de producción duro 23.832 horas y un periodo de cierre de 18,0749 horas, tal como se muestran en la figura siguiente.

History plot (Pressure [psia], Liquid Rate [STB/D] vs Time [hr])

Figura 5.5.1: Datos de presiones vs tiempo del pozo horizontal UPSE 02H Fuente: Software Ecrin v4.02.04.(Saphir). Elaborado por: Edison Yagual Muñoz –Vicente Orellana Lucumi Para el registro de presión se utilizó el sensor Zi-1012 que fue ubicado en el No-Go asentado a 10032 ft. Estos valores de presión del yacimiento "B" serán reportados a la mitad de las perforaciones (mp) estimada a 10242 ft.

En el proceso de análisis se usaron los datos básicos del yacimiento que fueron suministrados por la empresa operadora y se han realizado evaluaciones de los datos de análisis PVT: P_b , R_s , B_o a partir de la correlación de LASATER y μ_o a partir de Beggs et al, aplicando el software de Interpretación Ecrin v4.02.04.(saphir).

5.5.2. Datos Básicos para la Evaluación

Se presentan diferentes tablas con toda la información para la evaluación.

Datos de la prueba de producción:

Qo	929.16 BPPD
Qw	203.76 BAPP
Qt	1132 BFPD
BSW	18 %
API	28

Tabla # 26. Datos de la prueba de producción del pozo horizontal UPSE 02H Elaborado por: Autores Edison Yagual Muñoz –Vicente Orellana Lucumi

Parámetros del estrato:

Hn	80t
Ø	20
Rw	0.25ft
Ту	234 °F

Tabla # 27. Datos de parámetros de estrato del pozo horizontal UPSE 02H Elaborado por: Autores Edison Yagual Muñoz –Vicente Orellana Lucumi

Parámetros del fluido:

Bo	1.35b/stb
Bw	1.10 rb/stb
μο	1cps
Ct	1.5e-5 psi-1
BT	1.25b/stb

Tabla # 28. Datos de parámetros de fluido del pozo horizontal UPSE 02H Elaborado por: Autores Edison Yagual Muñoz –Vicente Orellana Lucumi

5.5.3. Interpretación.

La gráfica 5.5.3A corresponde a la derivada, se puede ver que tiene tres etapas, la primera corresponde al efecto de almacenamiento, la segunda etapa indica el flujo en el yacimiento, y la última etapa señala la presencia del efecto límite:

La primera zona se considera constante debido al almacenamiento

La segunda zona corresponde a un flujo de tipo radial en el pozo, que indica una estabilización (m=0).

La parte final de la gráfica presenta el efecto límite, que para éste caso en particular tiende a formar una barrera cercana debido a la presencia de un canal

Log-Log plot: dp and dp' [psi] vs dt [hr]

Figura 5.5.3.A: Datos de la derivada de presión vs tiempo equivalente del pozo horizontal UPSE 02H Fuente: Software Ecrin v4.02.04.(Saphir). Elaborado por: Edison Yagual Muñoz –Vicente Orellana Lucumi

Se muestra la curva semilogarítmica, en la cual se puede identificar una pendiente correspondiente al flujo radial y apreciar en la gráfica 5.5.3B que tiende a declinar su pendiente debido al efecto de límite.

Horner plot: p [psi] vs log(tp+dt)-log(dt)

Figura 5.5.3.B: Presión vs tiempo de Horner del pozo horizontal UPSE 02H Fuente: Software Ecrin v4.02.04.(Saphir). Elaborado por: Edison Yagual Muñoz –Vicente Orellana Lucumi

5.5.4. Resultados de la Interpretación

De los resultados mediante el uso del software al ajuste de las curvas, tanto de la semilogarítmica y de la derivada se obtuvieron en consideración a los parámetros del yacimiento las tablas siguientes:

Método de horner

Permeabilidad (k)	278 md
K.H	22300 md,ft
S	1.67
P*(@1hr)	3892.62 psi
Pendiente	-9.08307 psi

Tabla # 29. Resultados de interpretación del método de Horner del pozo horizontal UPSE 02H Elaborado por: Autores Edison Yagual Muñoz –Vicente Orellana Lucumi

Método de la derivada

Cs	0.0213bl/psi
К	218 MD
S	0.972
Pi	3910-02 PSI

Tabla # 30. Resultados de interpretación del método de la derivada del pozo horizontal UPSE 02H Elaborado por: Autores Edison Yagual Muñoz –Vicente Orellana Lucumi

Modelos de flujo:

Almacenamiento	Constante efecto de llenado	
Flujo del yacimiento	Flujo radial homogéneo	
Limites	Fallas paralelas o canal	

Tabla # 31. Resultados de interpretación modelos de flujo del pozo Horizontal UPSE 02H Elaborado por: Autores Edison Yagual Muñoz –Vicente Orellana Lucumi

CONCLUSIONES Y

RECOMENDACIONES

CONCLUSIONES

- El registro de presión de un pozo es uno de los parámetros fundamentales y útiles en la ingeniería de yacimientos. Estos datos intervienen en forma directa o indirecta en todas las etapas de los cálculos, por lo tanto la especificación exacta de los parámetros son de gran importancia en el desarrollo y explotación de un campo.
- 2. Los análisis de las pruebas de presión de pozos proporcionan valiosa, información tanto del yacimiento como del pozo. La información geológica, geofísica y petrofísica son utilizadas siempre y cuando sea posible junto con la obtenida a través de pruebas de presión, para de ésta manera poder construir un modelo de yacimiento, predecir el comportamiento del campo y la recuperación de petróleo en diferentes escenarios de operación.
- 3. La interpretación de los datos de pruebas de presión de un pozo horizontal son más complejos que de un vertical por la dificultad que se presenta en el momento de identificar los diferentes regímenes de flujo tridimensionales de un pozo horizontal, los mismos que podrían estar ausentes a causa del efecto de almacenamiento, heterogeneidades del yacimiento, geometría del pozo, etc, a diferencia de los regímenes de flujos unidimensionales de un pozo vertical.
- 4. Es de gran importancia la consideración de la permeabilidad vertical en pruebas de presión en un pozo horizontal porque el flujo de petróleo en el yacimiento es tanto en dirección vertical como

horizontal, a diferencia de un pozo vertical en donde solo se identifica un flujo horizontal a través del yacimiento.

5. El efecto de almacenamiento en un pozo horizontal es más significativo que en un vertical, debido al volumen que posee el pozo, además a causa de que la anisotropía del yacimiento hace que la permeabilidad efectiva horizontal disminuya.

RECOMENDACIONES

- Al ingresar los datos de las pruebas de presión que se desea analizar, se debe eliminar todo ruido durante el registro del sensor. El software Ecrin v4.02.04. (Saphir) es muy eficiente y permite eliminar estos anomalias para optimizar especialmente la evaluación y ajuste de la curva de la derivada.
- 2. Cuando se registran los datos (Características tanto del pozo, yacimiento y de los fluidos) solicitados por el software para el análisis correspondiente, es necesario verificar las unidades y seleccionar apropiadamente la correlación que se ajuste de la mejor manera al fluido, considerando los parámetros básicos conocidos y la Presión de saturación del vacimiento; específicamente las obtenidas de correlaciones de pruebas PVT del yacimiento en estudio, en el caso de no tener la disposición de un reporte PVT de laboratorio; para así calcular de forma adecuada el resto de parámetros necesarios para el análisis.
- 3. En la selección de los modelos (Almacenamiento, Yacimiento y de Límite), se debe analizar cuidadosamente el modelo que se ajuste más a nuestro caso real para la identificación del yacimiento, ya que todo falla que se cometa en ésta fase, traerán como consecuencias errores mayores en los parámetros del yacimiento considerados por el proceso de análisis. Por ésta razón es fundamental conocer el comportamiento teórico que debe tener cada modelo para que los diferentes gráficos sean los correctos, tanto en semi-log como log-log, para de ésta manera realizar una mejor interpretación.
- La finalidad de la aplicación del Software Ecrin v4.02.04. (Saphir).
 fue facilitar un sistema que permita al operador realizar con eficacia

todo trabajo que esté relacionado con el diseño, análisis, evaluación y simulación del registro de pruebas de pozos para evaluar de manera correctas las características y propiedades del pozo-yacimiento, aplicándolos luego a diferentes tipos de pozos y yacimientos del Oriente Ecuatoriano.

BIBLIOGRAFÍA

- 1. Schlumberger(2002)-_Introduction_to_Well_Testing_
- 2. Ing. Pedro Vaca, Ing. Miguel Ramones, Ing. Kerin Urrucheaga, Ing. Eduardo E Ríos - (2001) - Análisis de pruebas de presión
- 3. Dr. Hazim Dmour Class Notes PEG 493 Well Testing and the Ideal Reservoir Model
- 4. Reyes C., Jesús A.(2002) Metodología para la determinación del tensor de permeabilidad en yacimientos naturalmente fracturados -
- Larry W. Lake; Editor-in Chief / Edward D. Holstein; Editor SPE Petroleum Enginnering Handbook Vol. V / Reservoir Engineering and Petrophysics
- 6. John Lee John B. Rollins John P. Spivey (1997). SPE Textbook series vol.9 Pressure transient testing.
- 7. Freddy Humberto Escobar Macuelo, Ph.D. (2003) Análisis moderno de presiones de pozo.
- 8. Ing. Gabriel J. Colmont(S.F) Flujo de fluidos en medios porosos
- 9. Dr. Heber Cinco Ley (S.F). Modelos de pruebas de presión y datos de producción
- 10. Schlumberger (2002)_Well_Test interpretation
- 11. Kappa Engineering. (2005). Tutorial Ecrin v4.02.04(Saphir)

ANEXOS

Curvas de los modelos de presiones

Figura Anexo A.1: Cartas de identificación de yacimiento

Fuente: Análisis moderno de presiones de pozos de Freddy Escobar.

MODELO	YACIMIE	CIMIENTO HOMOGENEO		YACIMIENTO CON DOBLE POROSIDAD	
MODELO	ODELO SISTEMAS SISTEMAS		POZOS	INTERPOROSITY FLOW	
	INFINITOS	CERRADOS	FRACTURADOS	ESTADO PSEUDOESTABLE	TRANSITORIO
GRAFICO LOG-LOG			1/2	Flup	Flujo radal
GRAFICO SEMILOG	E E	<i></i>	Cartesiano	F, m m T	F//m //m //T
GRAFICO DE LA DERIVADA .º d.,º O./ºI Boj	0.5	05	1/2 	1/2 1/2 HitwisH	>1/4 HTTANEH
m – Pendiente semilog. Representa flujo radial infinito	 Infinito Barrera de no flujo Presión constante 	Hay un factor de 2 en separaciónentre Poy Po' para fracturas de conduc- tividad infinita. El factor es	Conduct. Infinita Flujo uniform Conduc. finita	Se desarrollan 2 lineas paralelas La transición inicia	F = FISURA T -SISTEMA TOTAL

Figura Anexo A.2: modelos de yacimientos Fuente: Análisis moderno de presiones de pozos de Freddy Escobar.

Fig. 1.3. Resumen de reacciones de modelos de pozos - yacimientos

Figura Anexo A.3: Resumen de reacciones de modelos de Pozos -Yacimientos Fuente: Análisis moderno de presiones de pozos de Freddy Escobar.

NEXOS B

Etapas para el uso del software

New document - page 1/2 - Main options	
Main options Information Units Comments	1
Test type: Standard Interference	Fluid type: Reference phase: Dil
Well Radius: 0.3 ft Pay Zone: 30 ft Porosity: 0.1	Available rates:
Reference time (t=0)	Start with analysis: Standard NonLinear Multi-Layer
Help << Back Next >	> Cancel

Figura Anexo B.1: Initialization dialog 1 of 2 Fuente: Tutorial Ecrin v4.02.04(Saphir)
New document - page 2/2 - PVT parameters			
Formation Volume Factor Β Viscosity μ Total compressibility ct	1 3E-6	B/STB cp psi-1	
Calculate from a PVT Correlation	μ Γ⊂ct		
Help << B	ack Create >>]	Cancel

Figura Anexo B.2: Initialization dialog 2 of 2 Fuente: Tutorial Ecrin v4.02.04(Saphir)

🔛 axac 🛛 🖬 Taki	Edi Rates 20 M	😞 🌆 Analysis 1 📷 📖			
Par					Standard Oil T
				P.	
				P.s.	
				a	

Figura Anexo B.3: Saphir main screen Fuente: Tutorial Ecrin v4.02.04(Saphir)

iu - Step 1 - Define Data	i Source						(
Select type of data source — File A Database From an opened	scii file Ecrin document	• 🖻	C Clipbo C Keybo C Keybo C Real t	vard pard - text pard - spreadsheet ime	2 🕂	columns	
wiew of hile : U:\HelpDoc\Ecr T: (h: 1.4041666666790843 0.309058849603326 0.172650633435071 0.163796754797375: 0.163796754797375	n 4.U\Doc ime r) 0 0 4 1600 20.6 1300 29.95 1 900 36.09 2 700 40.87 840 144.24	Liquid Rate (STB/D) 0392569143228 58360848186 821510059306 562100175099 92298855976	Cumulative V (olume STB)			2
2.953531340576008 7.600499000074506 8.086944444396067	620 340.59 0 340.5954	54767778312 767778312					

Figura Anexo B.4: Load step 1 – Define data source Fuente: Tutorial Ecrin v4.02.04(Saphir)

.oad - Step 2 - Dat	a Format							E
1.40416666 0.30905884 0.1725063 0.16379675 0.16379675 2.9553134 7.60049900 8.08694444	Enougn! 11 line (hr) (hr) 6790843 0 96033264 1600 3435071 1300 47973751 900 47973752 700 0576008 840 0576008 840 4396067 0	s read - no mo Liq 20.603925 9.9558360 6.0982151 0.8756210 4.2492298 0.5954767 595476777	re lines in file - nur uid Rate (STB/D) 69143228 848186 0059306 00175099 855976 778312 8312	nber of points in file is	Yolume (STB)			
Field	Туре	Unit	Name	Info	Well	Filter	Wind	
A 1.404167	Decimal time	hr 🗾	N/A	N/A	N/A	N/A	N/A	
B 0.000000	OIL Rate 📃	STB/D	OIL Rate		Tested well	N/A	N/A	
Lines Format Free Text Spreadsl C Free For Separator	Lines Format Free Text Spreadsheet Free Format Separator Decimal Point Time format Points Steps : durations Steps : time @ end			start end	Nute vs elasped time	2/ 4/1999	9 ▼ 12:06:45	AM 2
Surface rates	•				Help Cancel		< Back	Load >>

Figura Anexo B.5: Load step 2 – Data Format Fuente: Tutorial Ecrin v4.02.04(Saphir)

Figura Anexo B.6: Loaded flowrates Fuente: Tutorial Ecrin v4.02.04(Saphir)

 File Ascii file Database From an opened Ecrin document 	 Clipboard Keyboard - text Keyboard - spreadsheet Clime
aview of file: C:\HelpDoc\Ecrin 4.0\Doc\SapGS01\SapGS01.pre Date Data 04/12/1999 00:06:45 3257.29 04/12/1999 00:07:00 3351.53 04/12/1999 00:07:103 3390.65 04/12/1999 00:07:30 3414.85 04/12/1999 00:07:30 3444.85 04/12/1999 00:07:30 3445.44 04/12/1999 00:08:15 3455.44 04/12/1999 00:08:15 34545.44 04/12/1999 00:09:00 3471.44 04/12/1999 00:09:00 3477.71 04/12/1999 00:09:03 3487.9 04/12/1999 00:09:30 3487.9 04/12/1999 00:09:45 3472.13999999999999 04/12/1999 00:09:345 3492.13999999999999 04/12/1999 00:10:30 3502.61	λ.

Figura Anexo B.7: Load pressure Step 1 – Define data source Fuente: Tutorial Ecrin v4.02.04(Saphir)

Load - Step 2 - Da	ata Format						X
More lines	Enough ! 100 line	s read - end of file not reached - n	umber of points in file is 3	185			
A	B C						^
Date Date	a						
(psia)	06.45 3257.29						
04/12/1999 00:0	07:00 3351.53						
04/12/1999 00:0	07:15 3390.65						
04/12/1999 00:0	07:30 3414.85						
04/12/1999 00:0	U7:45 3431.96 D9:00 3445						
04/12/1999 00:0	08:15 3455.44						~
	-		1 1		1 1		_
Field	Туре	Unit Name	Info	Well	Filter V	Vind	
A 04/12/1999	31 [-] 12 [-] [19]94 💌	N/A N/A	N/A	N/A	N/A I	N/A	
B 00:06:45	ToD - Auto	N/A N/A	N/A	N/A	N/A I	N/A	
3257.290000	Pressure	psia 🔄 Pressure	<type -="" deptn="" n="" s=""></type>	l'ested well			
Lines Format -		Time format	Absolute vs	elasped time			
C Free							
		Points	Reference	e Date & Time 12/	4/1999	12:06:45 AM	
C Text		C Steps : durations					
 Spread 	sheet 📕	◯ Steps : time @ star	t				
C Free Fr	te mo	C. Change Lines (Change	Lurrent lin	ie: Absolute 12/	04/1999	12:06:45 AM	
the process		Steps. time @ end		Elapsed 0		hr 💌	
Separat	or Decimal Point						
							1
			Help	Cancel	<< B	Back Load >>	1

Figura Anexo B.9: History plot Fuente: Tutorial Ecrin v4.02.04(Saphir)

Extract dP - Gauge and Grou	p selection	
Active Gauge(s): Press	sure 🔽	List
Active Group(s): build	up #1	List eta
Active circup(s). [Dollo:	up #1	
Help	Cancel	ОК
Extract dP - Extraction parar	neters	×
Parameters for gauge	<pressure> and group <</pressure>	<build-up #1=""></build-up>
Smoothing:	0.1	
Filtration (pts/cycle):	100	
P at dt=0:	2924.08	psia 💌
Initial Pressure:	3566.65	
	Help C	ancel OK

Figura Anexo B.10: Extract dialogs Fuente: Tutorial Ecrin v4.02.04(Saphir)

Figura Anexo B.11: After extract Fuente: Tutorial Ecrin v4.02.04(Saphir)

Option Standard Model	-				
Wellbore model		Parameter	Value	Unit	Pick
Constant wellbore storage	-	Well & Wellbore p	arameters (Teste	d well)	
🔽 use well intake 🔽 pseudo time		С	1.20437E-4	bbl/psi	1
		Skin	0		1
Well model		Reservoir & Boun	dary parameters		
Vertical	-	Pi	3566.65	psia	
rate dependent skin add other wells		k.h	2661.37	md.ft	
I time dependent skin Reservoir model					
Homogeneous	-				
🗖 horizontal anisotropy 🗖 impose pi					
Boundary model					
Infinite	-				
-					

Figura Anexo B.12 : Model dialog Fuente: Tutorial Ecrin v4.02.04(Saphir)

Figura Anexo B.13: Loglog matches Fuente: Tutorial Ecrin v4.02.04(Saphir)

Figura Anexo B.14: Match after regression Fuente: Tutorial Ecrin v4.02.04(Saphir)

Figura Anexo B.15: Horner plot Fuente: Tutorial Ecrin v4.02.04(Saphir)

ANEXOS C

Datos de presiones de pozos en estudio

Gauge Se	rial Nur	mber:					
Gauge Model Number:							
Gauge Manutacturer:							
Maximum Recorder Range:							
Date of Last Calibration: 06/19/2009							
Tomporat	uno Unit	PSIA tet E ^o					
remper ac	ure onn	LS. F					
****	HEADER	PAGE	****				
****	HEADER	PAGE	*****				
Date		Time		Delta(Hou	rs)	Pressure	
6/13/201	3	19:41:59	9	0		16.16	
6/13/201	3	19:42:09	9	0.002778		16.119	
6/13/201	3	19:42:19	9	0.005556		16.14	
6/13/201	3	19:42:29	9	0.008333		16.157	
6/13/201	3	19:42:39	9	0.011111		16.09	
6/13/201	3	19:42:49	9	0.013889		16.091	
6/13/201	3	19:42:59	2	0.016667		16.035	
6/13/201	3	19:43:09	2	0.019444		16.154	
6/13/201	5	19:43:19		0.022222		16.131	
6/13/201	5	19:43:29		0.025		16.053	
6/13/201	5	19:43:39	2	0.02///8		16.001	
6/13/201	5	19:43:49	*	0.030330		16.14	
6/12/201	2	10:43:39	2	0.035555		16 121	
6/12/201	2	10.44.05	2	0.030111		16 084	
6/13/201	2	10.44.15	2	0.041667		16.08	
6/13/201	2	19.44.30	á	0 044444		16 045	
6/13/201	ž	19.44.40	á	0 047222		16 114	
6/13/201	ž	19:44:59	á	0.05		16,154	
6/13/201	3	19:45:09	5	0.052778		16.118	
6/13/201	3	19:45:19	9	0.055556		16.114	
6/13/201	3	19:45:29	9	0.058333		16.072	
6/13/201	3	19:45:39)	0.061111		16.137	
6/13/201	3	19:45:49	9	0.063889		16.086	
6/13/201	3	19:45:59	9	0.066667		16.086	
6/13/201	3	19:46:09	9	0.069444		16.091	
6/13/201	3	19:46:19	9	0.072222		16.06	
6/13/201	3	19:46:29	9	0.075		16.099	
6/13/201	3	19:46:39	9	0.077778		16.056	
6/13/201	3	19:46:49	9	0.080556		16.11	
6/13/201	3	19:46:59)	0.083333		16.118	
6/13/201	5	19:4/:09		0.086111		16.082	
6/13/201	5	19:47:19	9	0.088889		16.045	
6/13/201	5	19:47:29	9	0.09166/		16.115	
6/13/201	5	19:4/:39	*	0.094444		10.118	
0/13/201	5	19:47:49	9	0.09/222		10.05/	

Tabla # 32. Datos de presión pozo vertical 01V

Fuente: Compañía operadora X

Job Number Company Name Well Name Well Location Date(s) of Te Probe Serial Program Start Run Depth at	n est Number Time Probe Pressure	Port
Cum.Time BH1 hr 0.00000 0.00833 0.01667 0.02500 0.03333 0.04167 0.05000 0.05833 0.06667 0.07500 0.08333 0.09167 0.10000 0.10833 0.11667 0.12500 0.13333 0.14167 0.15000 0.15833 0.14667 0.17500 0.15833 0.19167 0.20000 0.28333 0.24167 0.22500 0.23333 0.24167 0.25833 0.24167 0.25000 0.25833 0.26667 0.27500 0.28333	BH Pres 1 psia 14.751 14.766 14.687 14.668 14.621 14.603 14.605 14.605 14.563 14.574 14.520 14.557 14.520 14.481 14.402 14.361 14.293 14.290 14.271 14.293 14.226 14.213 14.226 14.187 14.178 14.178 14.198 14.227 27.664 48.020 72.615 98.844 122.996	BH Temp 1 deg F 87.422 87.260 87.386 87.386 87.224 87.080 86.918 86.738 86.738 86.576 86.414 86.252 86.126 86.126 86.054 85.874 85.784 85.784 85.712 85.550 85.460 85.370 85.118 85.5118 85.025 85.190 85.118 85.118 85.025 85.190 85.118 85.025 85.190 85.118 85.025 85.118 85.025 85.118 85.025 85.118 85.025 85.118 85.025 85.118 85.025 85.118 85.025 85.120 85.118 85.025 85.120 85.120 85.120 85.120 85.120 85.120 85.120 85.120 85.118 85.025 85.120 85.118 85.025 85.120 85.120 85.120 85.120 85.120 85.120 85.120 85.120 85.120 85.120 85.120 85.120 85.120 85.120 85.120 85.120 85.120 85.220 85.220 85.120 85.200 85.220 85.200 85.220 85.2000 85.2000 85.2000 85.20000 85.2000000000000000000000000000000000000

Tabla # 33. Datos de presión pozo vertical 02V Fuente: Compañía operadora X

Gauge S Gauge M Gauge M Maximum Date of Pressur Tempera	erial Num odel Num anufactur Recorder Last Ca e Units: ture Unit	mber: ber: rer: r Range librati Psia ts: F°	on:	
***	HEADER HEADER	PAGE PAGE	*****	
	Time (hr) 0.0125 0.025 0.0375 0.05 0.0625 0.075 0.087499 0.1 0.1125 0.125 0.125 0.125 0.125 0.125 0.1625 0.175 0.1625 0.2125 0.2125 0.225 0.2375 0.25 0.25 0.25 0.2875 0.3 0.3125	9999999	999999	Data (psia) 14.139 14.18 14.196 14.222 14.213 14.23 14.212 14.188 14.197 14.174 7.066 7.128 7.1950000000000000 7.37 7.422 7.512 7.54 7.682 7.7249999999999999999 7.863 7.94 8.103 8.204000000000001 8.32 8.481

Tabla # 34. Datos de presión pozo horizontal 01H Fuente: Compañía operadora X

Job Number Company Name Well Name Well Location Date(s) of Test Probe Serial Number Program Start Time Run Depth at Probe Pressure Port	27 Feb @ 03 Mar/2010
Time (hr) 0 0.00416666592936963 0.0133333330694586 0.04194444447057322 0.123611111938953 0.223611111473292 0.423611111473292 0.423611111240462 0.52361111107631 0.62361111107631 0.8236111110309139 0.923611111822538 1.00555555573665 1.023888888827059 1.12222222248092 1.3222222248092 1.3222222248092 1.3222222248092 1.3222222248092 1.3222222248092 1.3222222248092 1.3222222248092 1.3222222248092 1.3222222248092 1.3222222248092 1.3222222248092 1.3222222248092 1.3222222248092 1.3222222248092 1.322222223063 1.822222223063 1.822222223063 1.822222223063 1.822222223063 1.822222223063 1.822222223063 1.822222223063 1.822222223063 1.8222222223063 1.822222223063 1.822222223063 1.8222222223063 1.8222222223063 1.8222222223063 1.8222222223063 1.8222222223063 1.8222222223063 1.8222222223063 1.8222222223063 1.8222222223063 1.8222222223063 1.8222222223063 1.82222222223063 1.82222222223063 1.8222222223063 1.8222222223063 1.8222222223063 1.82222222223063 1.8222222223063 1.82222222223063 1.82222222223063 1.82222222223063 1.82222222223063 1.822222222223063 1.82222222223063 1.82222222223063 1.82222222223063 1.82222222223063 1.82222222223063 1.8222222222223063 1.8222222222222222222222222222222222222	Data (psia) 3913.15 3904.15 3893.7 3873.2 3860.35 3848.55 3850.6 3844.7 3846.15 3842.1 3842.2 3840.3 3844.650000000001 3840.3 3844.650000000001 3840.1 3840.1 3840.1 3840.1 3840.5 3841 3840.5 3841 3840.5 3840.5 3840.35 3840.5 3838.3 840.35 3839.9 3840 3835.65 3835.25 3837.25

Tabla # 35. Datos de presión pozo horizontal 02H Fuente: Compañía operadora X