

UNIVERSIDAD ESTATAL PENÍNSULA DE SANTA ELENA

FACULTAD DE CIENCIAS DE LA INGENIERÍA

CARRERA DE INGENIERÍA CIVIL

ANÁLISIS Y DISEÑO DE UNA ESTRUCTURA DE 5 PISOS CON PÓRTICOS DE HORMIGÓN ARMADO, MEDIANTE EL MÉTODO DE LA FUERZA HORIZONTAL EQUIVALENTE, APLICANDO NORMATIVA ECUATORIANA, COLOMBIANA; Y ACI 318-19

TRABAJO PRÁCTICO

Previo a la obtención del Título de:

INGENIERO CIVIL

Autor:

VICTOR OSCAR BAQUERO SALTOS

Tutor(a):

ING. VIANNA ANDREA PINOARGOTE ROVELLO. MSc

La Libertad, Ecuador

2021

UNIVERSIDAD ESTATAL PENÍNSULA DE SANTA ELENA

FACULTAD DE CIENCIAS DE LA INGENIERÍA

CARRE<mark>RA DE IN</mark>G<mark>ENIERÍA CI</mark>VIL

TEMA:

ANÁLISIS Y DISEÑO DE UNA ESTRUCTURA DE 5 PISOS CON PÓRTICOS DE HORMIGÓN ARMADO, MEDIANTE EL MÉTODO DE LA FUERZA HORIZONTAL EQUIVALENTE, APLICANDO NORMATIVA ECUATORIANA, COLOMBIANA; Y ACI 318-19

TRABAJO PRÁCTICO

Previo a la obtención del Título de:

INGENIERO CIVIL

IIN

Autor:

VICTOR OSCAR BAQUERO SALTOS

Tutor(a):

ING. VIANNA ANDREA PINOARGOTE ROVELLO. MSc

La Libertad, Ecuador

2021

Aprobación del Tutor

En mi calidad de Tutor del Trabajo del Componente Práctico, modalidad Examen de Grado de carácter Complexivo, denominado "ANÁLISIS Y DISEÑO DE UNA ESTRUCTURA DE 5 PISOS CON PÓRTICOS DE HORMIGÓN ARMADO, MEDIANTE EL MÉTODO DE LA FUERZA HORIZONTAL EQUIVALENTE, APLICANDO NORMATIVA ECUATORIANA, COLOMBIANA; Y ACI 318-19", elaborado por el Sr. VICTOR OSCAR BAQUERO SALTOS, declaro que después de haberlo revisado, concedo la respectiva aprobación.

TUTOR(A)

Aconoro

Ing. Pinoargote Rovello Vianna Andrea, MSc.

La Libertad, a los 08 días del mes de marzo del 2021.

Declaración de Autenticidad

YO, Victor Oscar Baquero Saltos

DECLARO QUE:

El trabajo/ tarea integradora de grado denominado "Análisis y diseño de una estructura de 5 pisos con pórticos de hormigón armado, mediante el método de la fuerza horizontal equivalente, aplicando normativa ecuatoriana, colombiana; y ACI 318-19", ha sido desarrollada (o) con base a una investigación exhaustiva, respetando derechos intelectuales de terceros conforme las referencias que constan al pie de las páginas correspondientes, cuyas fuentes se incorporan en la bibliografía.

Consecuentemente este trabajo es de mi autoría.

En virtud de esta declaración, me responsabilizo del contenido, veracidad y alcance científico de la tesis y/o proyecto de grado en mención.

ich Request

Victor Oscar Baquero Saltos C.I.: 0953806833

UNIVERSIDAD ESTATAL PENÍNSULA DE SANTA ELENA Creación: Ley No. 110 R.O. No. 366 (Suplemento) 1998-07-22

La Libertad, 11 de marzo de 2021

CERTIFICADO ANTIPLAGIO

004-TUTOR VAPR-2021

En calidad de tutor del trabajo de titulación denominado "ANÁLISIS Y DISEÑO DE UNA ESTRUCTURA DE 5 PISOS CON PÓRTICOS DE HORMIGÓN ARMADO, MEDIANTE EL MÉTODO DE LA FUERZA HORIZONTAL EQUIVALENTE, APLICANDO NORMATIVA ECUATORIANA, COLOMBIANA; Y ACI 318-19", elaborado por el Sr. VICTOR OSCAR BAQUERO SALTOS, egresado de la Carrera de INGENIERÍA CIVIL, de la Facultad de CIENCIAS DE LA INGENIERÍA de la Universidad Estatal Península de Santa Elena, previo a la obtención del título de INGENIERO CIVIL, me permito declarar que una vez analizado en el sistema antiplagio URKUND, luego de haber cumplido los requerimientos exigidos de valoración, el presente proyecto ejecutado, se encuentra con 2% de la valoración permitida, por consiguiente se procede a emitir el presente informe.

Adjunto reporte de similitud.

Atentamente,

Ing. Mgs. Vianna Pinoargote Rovello C.I.:2400061632 DOCENTE TUTOR

UNIVERSIDAD ESTATAL PENÍNSULA DE SANTA ELENA

Creación: Ley No. 110 R.O. No. 366 (Suplemento) 1998-07-22

Reporte Urkund.

ULKOUD

Document Information

Analyzed document	Tesina sin figuras tablas.docx (D97906680)
Submitted	3/10/2021 11:01:00 PM
Submitted by	
Submitter email	victor.baquerosaltos@upse.edu.ec
Similarity	2%
Analysis address	Imoreno.upse@analysis.urkund.com

Sources included in the report

w	URL: https://repositorio.upse.edu.ec/bitstream/46000/5417/1/UPSE-TIC-2020-0016.pdf Fetched: 1/22/2021 6:10:10 AM	88	1
w	URL: https://repositorio.upse.edu.ec/bitstream/46000/5029/1/UPSE-TIC-2019-0011.pdf Fetched: 11/14/2019 6:58:17 PM	88	2
w	URL: https://core.ac.uk/download/pdf/233044347.pdf Fetched: 3/10/2021 11:02:00 PM	88	2

Agradecimiento

Agradezco a Dios por permitirme vivir este momento tan anhelado para mí, porque a pesar de todas las vicisitudes que se han presentado siempre me ha brindado la fortaleza y sabiduría necesaria para poder sobrellevarlas.

A mi madre Alexandra, a mi padre Victor, por hacer de mí una persona de bien, por darme ese apoyo incesante a lo largo de todos mis años de estudio. A mis hermanos Alex, Michael, Domenica.

A mi Esposa Lady, quien ha estado para mí cuando siempre la he necesitado, con quien he formado un lindo hogar, y con la que quiero compartir todos los triunfos a futuro.

Como no agradecer a mi querida Universidad UPSE porque durante 11 años consecutivos me ha abierto sus puertas para educarme y servir a la sociedad. A todos los docentes que han aportado en mi formación profesional, a mis amigos con los que compartí todo este tiempo, especialmente a mis compañeros de Civil Sport, con los que se vivieron gratos momentos.

Aprobación del TutorI
Declaración de Autenticidad II
Agradecimiento V
Índice GeneralVI
Índice de TablasX
Índice de FigurasXI
Índice de AnexosXII
Resumen XIII
AbstractXIV
Introducción1
Unidad I2
1.1. Planteamiento del Problema
1.2. Justificación de la Investigación
1.3. Objetivos
1.3.1. Objetivo general
1.3.2. Objetivos específicos
Unidad II4
2. Marco Teórico
2.1. Cargas Muertas, Vivas y Combinaciones de Carga
2.1.1. Cargas
2.1.2. Combinaciones de carga
2.2. Peligro Sísmico
2.3. Método de la Fuerza Horizontal Equivalente
2.4. Sistema estructural de Pórtico Especial Sismorresistente o (Des)
2.5. Derivas de Piso
2.6. Ductilidad

Índice General

2.7. To	prsión Excesiva	6
2.8. Se	ecciones fisuradas	6
2.9. El	ementos Del Sistema Estructural	6
2.9.1.	Losas	6
2.9.2.	Vigas	6
2.9.2	2.1. Predimensionado	7
2.9.2	2.2. Reforzamiento de vigas	7
2.9.3.	Columnas:	8
2.9.3	3.1. Predimensionado	8
2.9.3	8.2. Reforzamiento en columnas	9
2.9.3	3.3. Refuerzo transversal y confinamiento	9
2.9.4.	Nudos en Pórticos Especiales Resistentes a Momento	11
Unidad III		12
3. Metodo	logía de Análisis para Diseño Sísmico	12
3.1. No	orma NSR-10 (Título A)	12
3.1.1.	Zonas de Amenaza Sísmica	12
3.1.2.	Clasificación de los Perfiles Del Suelo	14
3.1.3.	Coeficientes de perfil de suelo Fa y Fv	14
3.1.4.	Espectro de Diseño	15
3.1.5.	Coeficiente de Importancia, I	16
3.1.6.	Configuración estructural de la edificación	16
3.1.6	5.1. Coeficiente de reducción de fuerzas sísmicas de diseño	17
3.1.6	5.2. Irregularidades en planta y elevación	17
3.1.7.	Período Fundamental de la Edificación	18
3.1.8.	Fuerzas Sísmicas Horizontales Equivalente	18
3.1.9.	Dirección de Aplicación de las Fuerzas Sísmicas	19
3.1.10.	Límites de la Deriva Máxima de Piso	19

3.2. No	orma NEC-15 SE - DS	
3.2.1.	Zonas de Amenaza Sísmica	
3.2.2.	Clasificación de los Perfiles de Suelos	21
3.2.3.	Coeficientes de Perfil de Suelo	21
3.2.4.	Espectro de Respuesta Elástico de Aceleraciones	23
3.2.5.	Obtención del Periodo de Vibración T	24
3.2.6.	Coeficiente de Importancia	24
3.2.7.	Factor de Reducción de Fuerzas Sísmicas de Diseño	25
3.2.8.	Coeficientes de Configuración Estructural	26
3.2.9.	Carga Sísmica Reactiva	26
3.2.10.	Cortante Basal de Diseño	26
3.2.11.	Distribución de Fuerzas Sísmicas Laterales	27
3.2.12.	Efectos de Segundo Orden P-∆ e Índice De Estabilidad Qi	27
3.2.13.	Límites de Deriva	
Unidad IV		
4. Predisei	ño de la estructura y obtención de fuerzas de diseño	
4.1. Es	pecificaciones del Hormigón	
4.2. Co	ombinaciones de Carga	
4.3. Pr	edimensionamiento de Elementos del Sistema Estructural	
4.3.1.	Losa	
4.3.2.	Vigas	
4.3.3.	Columnas	
4.4. Ot	otención de Fuerzas de Diseño NSR-10	
4.4.1.	Determinación de Aa y Av	
4.4.2.	Cálculo de los Coeficientes Fa y Fv	
4.4.3.	Factor de Importancia	
4.4.4	. Cálculo de Tc y TL Periodos Límites de Vibración	

4.4.5.	Cálculo de Sa	
4.4.6.	Espectro de Diseño NSR-10	
4.4.7.	Cálculo del Periodo de Vibración de la Estructura Ta	
4.4.8.	Cálculo del Cortante Sísmico	
4.4.9.	Fuerzas Sísmicas De Diseño NSR-10	
4.5. Ol	btención de Fuerzas de Diseño NEC-15	
4.5.1.	Parámetros para Obtención del Espectro de Diseño	
4.5.2.	Obtención de los Períodos Límites de Vibración	
4.5.3.	Cálculo de Sa(g)	35
4.5.4.	Espectro de Diseño	
4.5.5.	Cálculo del Periodo de Vibración Ta	
4.5.6	5. Cortante Basal de Diseño	
4.5.7.	Fuerzas Sísmicas de Diseño NEC-15	
Unidad V		
5. Cheque	o de Condiciones de Regularidad de la Estructura; y Diseño Final de E	lementos
del Sistema	Estructural con ACI318-19	
5.1. M	odelado de la Estructura en Etabs v.18	
5.1.1.	Descripción de la estructura:	
5.2. Cł	nequeo de Derivas de Piso (NEC-15)	
5.3. Cł	nequeo de Índice de Estabilidad Qi (NEC-15)	
5.4. Cł	nequeo de Derivas de Piso (NSR-10)	43
5.5. Cł	nequeo De Índice De Estabilidad Qi (NSR-10)	45
5.6. Di	iseño de Elementos con ACI 318-19	46
5.6.1.	Diseño de Viga	46
5.6.1	.1. Diseño a flexión	46
5.6.1	.2. Diseño a cortante	51
5.6.2.	Diseño de Columna	

5.6.2.1.	Diseño a flexo-compresión	55
5.6.2.2.	Diseño a cortante	57
Conclusiones		62
Recomendacione	2S	64
Anexos		67

Índice de Tablas

Tabla 1. Resistencia nominal del nudo a cortante Vn	11
Tabla 2. Clasificación de los perfiles de suelo	14
Tabla 3. Valores de Fa, para la zona de periodos cortos del espectro	14
Tabla 4. Valores de Fv para la zona de periodos intermedios del espectro	15
Tabla 5. Valores del coeficiente de importancia I	16
Tabla 6. Coeficiente de irregularidad en planta	17
Tabla 7. Coeficiente de irregularidad en altura	17
Tabla 8. Valor de Ct y α para el cálculo del periodo aproximado Ta	18
Tabla 9. Coeficiente de Fuerza de Piso Cvx	19
Tabla 10. Derivas máximas como porcentaje de hpi	19
Tabla 11. Valores de Z en función de la zona sísmica	20
Tabla 12. Tipos de perfiles de suelo	21
Tabla 13. Valores de Fa según la zona sísma y el perfil de suelo	22
Tabla 14. Valores de Fd según la zona sísma y el perfil de suelo	22
Tabla 15. Valores de Fs según la zona sísma y el perfil de suelo	22
Tabla 16. Parámetros para construir el Espectro de Diseño	23
Tabla 17. Valores de Ct y α según la tipología de la estructura	24
Tabla 18. Valores del coeficiente I por categorías.	24
Tabla 19. Valores del coeficiente R para sistemas estructurales dúctiles	25
Tabla 20. Coeficiente de regularidad en planta	
Tabla 21. Coeficiente de regularidad en elevación	
Tabla 22. Fuerza Cortante basal de diseño	27
Tabla 23. Distribución de fuerzas sísmicas laterales	27
Tabla 24. Índice de estabilidad Qi	
Tabla 25. Límites de deriva ΔM máxima	

Tabla 26. Teorema de Steiner para equivalencia de inercia	
Tabla 27. Distribución de cargas en la estructura	
Tabla 28. Secciones de columnas y carga tributaria	
Tabla 29. Secciones preliminares de Columnas y Vigas; y Cargas por piso	
Tabla 30. Valores de Aa y Av del Municipio de Quibdó.	
Tabla 31. Distribución de Fuerzas Horizontales equivalentes a cada piso	
Tabla 32. Parámetros para obtención del Espectro de diseño de NEC-15	
Tabla 33. Distribución de Fuerzas Horizontales equivalentes a cada piso.	
Tabla 34. Derivas de Piso de la Estructura Prediseñada y modelada en Etabs	v.18 40
Tabla 35. Secciones finales de Vigas y Columnas	
Tabla 36. Chequeo Final de Derivas de piso (NEC-15)	
Tabla 37. Chequeo de Índice de Estabilidad Qi (NEC-15)	
Tabla 38. Derivas de Piso (NSR-10) a partir de las secciones finales obten	idas con NEC-
15	
Tabla 39. Secciones finales de Vigas y Columnas (NSR-10)	
Tabla 40. Chequeo Final de Derivas de piso (NSR-10)	
Tabla 41. Chequeo de Índice de Estabilidad Qi (NSR-10)	
Tabla 42. Momentos de diseño (Ton.m) para vigas críticas	
Tabla 43. Refuerzo longitudinal (cm²) en vigas críticas	
Tabla 44. Valores de Carga Axial y Momento considerados en el Diagrama	de Interacción
NEC	
Tabla 45. Valores de Carga Axial y Momento considerados en el Diagrama	de Interacción
NSR	
Tabla 46. Diferencias en el Análisis sísmico de normativas NEC-15 y NSR-	1062

Índice de Figuras

Figura 1.	Derivas de piso	5
Figura 2.	Equivalencia de losas a partir de su inercia	6
Figura 3.	Especificaciones para elementos a flexión	7
Figura 4.	Consideraciones del acero longitudinal en elementos a flexión	7
Figura 5.	Especificaciones para estribos en zonas de traslape	8
Figura 6.	Espaciamientos de estribos en vigas	8
Figura 7.	Ejemplo de Áreas tributarias de columnas	9

Figura 8. Espaciamiento del refuerzo transversal en columnas	
Figura 9. Modelo del refuerzo transversal en columnas	11
Figura 10. Mapa de Clasificación de Zonas de Amenaza Sísmica	12
Figura 11. Mapa de valores de Aa	13
Figura 12. Mapa de valores de Av	13
Figura 13. Espectro de diseño elástico de aceleraciones NSR-10	15
Figura 14. Mapa de zonas sísmicas y factor de zona z	
Figura 15. Espectro de diseño en aceleraciones NEC-15	23
Figura 16. Espectro de diseño del Municipio Quibdó, para un suelo Tipo C	
Figura 17. Espectro de diseño Santa Elena, para un suelo Tipo C	
Figura 18. Modelación de la Estructura en Etabs V.18	
Figura 19. Vista en Elevación de la Estructura, sentido x e y	39
Figura 20. Máximos Momentos en las vigas de la estructura de (NEC) y (NSR)	46
Figura 21. Cortante equivalente en vigas	
Figura 22. Detalle de refuerzo longitudinal y transversal en vigas analizadas	53
Figura 23. Momentos de diseño para columnas a flexo-compresión	55
Figura 24. Diagrama de Interacción Columna 50x50 NEC	
Figura 25. Diagrama de Interacción Columna 80x80 NSR	
Figura 26. Detalle del acero en las columnas analizadas	57
Figura 27. Detalle del acero transversal en las columnas	60
Figura 28. Detalle del refuerzo longitudinal y transversal en pórticos, (NSR)	67
Figura 29. Detalle del refuerzo longitudinal y transversal en pórticos. (NSR)	68
Figura 28. Detalle de la conexión viga- columna NEC	69
Figura 29. Detalle de la conexión viga- columna NSR	70

Índice de Anexos

Anexo 1. Refuerzo longitudinal y transversal en pórticos de la estructura c	on Normativa
NEC-15	
Anexo 2. Refuerzo longitudinal y transversal en pórticos de la estructura c	on Normativa
NSR-10	
Anexo 3. Cortante en el nudo	69
Anexo 4. Columna Fuerte – Viga Débil	71

Resumen

La investigación realizada pretende establecer una comparación de las normas de análisis sísmico empleadas en Ecuador y Colombia respectivamente, considerando el método de la fuerza horizontal equivalente. Para ello se realiza un prediseño de los elementos que conforman el sistema estructural de la edificación propuesta.

Siguiendo la metodología de ambas normas se obtienen fuerzas horizontales de diseño correspondientes a cada piso de la estructura propuesta, una para cada norma, y para proceder al respectivo análisis se utiliza el software Etabs 18 v1.1 para la modelación de la estructura. Con los resultados obtenidos se chequean las condiciones de regularidad, tales como: torsión excesiva, derivas de piso y efectos de segundo orden. Posterior a aquello se definen las secciones finales de columnas y vigas, para poder establecer la cantidad de refuerzo en las mismas.

Para el diseño de vigas y columnas se emplea la normativa americana ACI 318-19 donde a detalle se presentan las especificaciones correspondientes. Finalmente, con el diseño de los elementos antes mencionados se realiza una comparación de las normativas, donde se evidencia que NEC-15 resulta ser más permisible que NSR-10, debido al límite que presenta su deriva máxima.

Palabras claves: Análisis Sismorresistente, fuerza horizontal, comparación, normativas.

Abstract

The purpose of this research is to establish a comparison of the seismic analysis standards used in Ecuador and Colombia respectively, considering the equivalent horizontal force method. For this purpose, a pre-design of the elements that make up the structural system of the proposed building is carried out.

Following the methodology of both standards, the horizontal design forces corresponding to each floor of the proposed structure are obtained, one for each standard, and to proceed with the respective analysis, the Etabs 18 v1.1 software is used for the modeling of the structure. With the results obtained, the regularity conditions are checked, such as: excessive torsion, floor drifts and second order effects. Subsequently, the end sections of the columns and beams are defined to establish the amount of reinforcement in them.

For the design of the beams and columns, the American standard ACI 318-19 is used, where the corresponding specifications are presented in detail. Finally, with the design of the mentioned elements, a comparison of the standards is made, where it is shown that the NEC-15 is more permissible than the NSR-10, due to the limit of its maximum drift.

Keywords: Seismic-resistant analysis, horizontal force, comparison, standards.

Introducción

El borde occidental Sudamericano, desde un enfoque sismológico, es considerado como el de mayor potencial sísmico del mundo, puesto que aproximadamente el 95% de la energía producida por terremotos se libera en esta zona. Su actividad sísmica se asocia al proceso de subducción de la placa nazca (litosfera oceánica) debajo de la sudamericana (litosfera continental). Quispe, Tavera et al. (2003).

A la zona de subducción Colombia- Ecuador se le atribuyen importantes sismos como los de 1906 (8,9Mw), 1958 (7,8 Mw), 1942 (5,8 Ms), 1979 (8,1 Mw), y el más reciente de magnitud 7,8 Mw que trajo consigo grandes pérdidas humanas, a nivel de estructuras provocó gran destrucción en la parte norte de Ecuador, e incluso fue sentido con gran intensidad en el Suroccidente Colombiano. Salcedo-Hurtado and Pérez (2016).

Los códigos sísmicos consideran los criterios de análisis y diseño de las edificaciones situadas en zonas donde puedan ocurrir movimientos telúricos. Lanza, Puentes et al. (2003). A pesar de que los principios para el cálculo de la respuesta estructural son los mismos, no todos utilizan la misma metodología para aplicar cada uno de estos conceptos. Andrade Insúa (2004)

Lafuente, Grases et al. (2014) menciona que, desde los inicios del siglo XX, en la práctica de la ingeniería Sismorresistente, se ha empleado el método simplificado de fuerzas horizontales equivalentes para esquematizar las acciones sísmicas sobre las edificaciones de poca altura. NEC-15 y NSR-10 códigos sísmicos de Ecuador y Colombia respectivamente, sugieren como procedimiento mínimo de análisis sísmico a este método, siendo la última un poco mas conservadora debido a las consideraciones para su aplicación. A fin de conocer la metodología de análisis sísmico de una estructura empleando ambas normativas, se propone realizar un análisis lineal estático a una estructura de cinco plantas con pórticos de hormigón armado para una determinada ciudad de Colombia y Ecuador.

Mediante la herramienta CSI ETABS v18 se realiza el análisis, y a partir de los resultados del mismo, se emplea la normativa americana ACI 318-19 para el diseño de elementos tales como vigas, columnas y nudos. De modo que la estructura sea capaz de resistir solicitaciones sismicas y con adecuada ductilidad.

Unidad I

1.1. Planteamiento del Problema

Las normas sismorresistentes constituyen una sistematización de los conocimientos en la práctica ingenieril. En los años 80, ya en América Latina se contaba con normativas modernas de diseño sísmico que han seguido revisándose y actualizándose, producto de adaptaciones y modificaciones de las normas americanas, que por lo general han sido modelo para las normas de nuestra región.

Los países en su afán de disminuir el impacto ante eventos sísmicos han constituido normas sismorresistentes, que, si bien es cierto poseen filosofías de diseño semejantes, varían mucho en la metodología para el cumplimiento de los principios que posibilitan un buen desempeño estructural.

Aspectos como la metodología para la obtención de espectros de diseño, los valores para factores de reducción de fuerzas sísmica de diseño, y otras consideraciones como límites de derivas de piso, hacen que una norma difiera de otra, y que una estructura tenga mayor o menor vulnerabilidad sísmica cuando se compara con normativas de otros países.

En este trabajo se pretende diseñar una estructura a partir de los parámetros descritos en las normativas sismorresistentes NEC-15 y NSR-10; y ACI 318-19, con el objetivo de establecer diferencias entre las configuraciones finales del sistema estructural.

1.2. Justificación de la Investigación

La comparación de la Norma Ecuatoriana de Diseño Sismorresistente NEC-15 SE-DS con la Norma Sismorresistente colombiana NSR-10 Título A, permite evaluar las diferencias entre los requerimientos y parámetros considerados para el diseño sísmico de estructuras contemplados en ambas normas. Recordando que uno de los principales objetivos del diseño sísmico es el buen desempeño de una construcción ante un sismo, las comparaciones que se realizan están enfocadas a requerimientos como las fuerzas de diseño, el control de derivas y efectos P- Δ , para un sistema de pórticos dúctiles de hormigón armado.

Sirviendo como una base para posteriormente analizar qué aspectos se pudiesen mejorar en nuestra norma, para de esta manera reducir el riesgo de colapso de las estructuras, y en su defecto salvaguardar la vida de las personas.

1.3. Objetivos

1.3.1. Objetivo general

 Realizar el análisis sísmico a una estructura mediante el método de la fuerza horizontal equivalente conforme a las normativas NEC-15 y NSR-10, y su posterior diseño de acuerdo con ACI 318-19.

1.3.2. Objetivos específicos

- Obtener un espectro de diseño semejante para un suelo tipo C usando normativa NEC-15 y NSR-10.
- Establecer las principales diferencias entre las normas NEC-15 y NSR-10, en la aplicación del método de fuerzas horizontales equivalentes para una estructura tipo.
- Comparar las secciones de Vigas y columnas obtenidas en el diseño sismorresistente.

Unidad II

2. Marco Teórico

2.1. Cargas Muertas, Vivas y Combinaciones de Carga.

2.1.1. Cargas

Constituidas por cargas muertas y vivas, donde las primeras están definidas por el peso de elementos permanentes en la estructura, tales como muros, paredes, instalaciones, recubrimientos, entre otros. Mientras que a las cargas vivas las conforman el peso de las personas, muebles, accesorios móviles, entre otros.

2.1.2. Combinaciones de carga

El diseño de las estructuras, y sus componentes debe hacerse de tal forma que sus resistencias de diseño igualen o excedan los efectos producidos por las cargas mayoradas producto de combinaciones.

NEC (2015), detalla el valor de las cargas muertas, vivas y las combinaciones de carga en el capítulo de cargas no sísmicas, mientras que NSR-10 (2010) las detalla en su título B.

2.2. Peligro Sísmico

Risk (1984) lo define como cualquier fenómeno físico (por ejemplo, temblores de tierra, fallas de tierra) asociado con un terremoto que pueda producir efectos adversos en las actividades humanas.

El peligro sísmico en el borde sudamericano está íntimamente relacionado con dos tipos de fuentes sísmicas: subducción mediante sismos interplaca (prof. < 40km) e intraplaca (prof. entre 40 y 300 km), y sismos corticales (prof. < 40km). Quinde Martínez and Reinoso Angulo (2016).

2.3. Método de la Fuerza Horizontal Equivalente

Reyes (1998) menciona que casi todos los códigos sismorresistentes incluyen al método de la fuerza horizontal equivalente, para determinar fuerzas sísmicas horizontales de diseño, debido a que es un procedimiento aproximado que evita realizar un análisis dinámico de la estructura.

Las dos aproximaciones que fundamentan al método, consisten en: limitar la respuesta sísmica al primer modo, e igualar la masa efectiva del primer modo a la masa total de la estructura. Supliendo así la ausencia de los otros modos.

2.4. Sistema estructural de Pórtico Especial Sismorresistente o (Des)

Estructura constituida por columnas y vigas descolgadas del sistema de piso, resistente a cargas verticales y a las originadas por sismos, donde, tanto el pórtico como la conexión viga-columna resisten la totalidad de estas fuerzas. Su diseño y detallamiento hace que presente un comportamiento dúctil.

2.5. Derivas de Piso

NEC (2015) menciona que las derivas son desplazamientos de un piso como resultado de una fuerza lateral. Son medidas a partir de dos puntos extremos de la estructura que se ubican en la misma línea de acción. Se calculan restando los desplazamientos del piso superior e inferior.

Figura 1.

Derivas de piso

 $\gamma_i = \frac{\Delta_i - \Delta_{i-1}}{h_i}$

Nota. Fuente: ABAD and TORRES (2015)

2.6. Ductilidad

Marte Jiménez (2014) define a la ductilidad como la capacidad de un elemento o sistema estructural de experimentar deformaciones más allá del rango elástico con una permisible reducción de rigidez y resistencia.

2.7. Torsión Excesiva

NEC (2015) menciona que existe irregularidad torsional en una estructura, cuando un extremo posee una deriva máxima que supere en 1,2 veces al promedio de la deriva de los extremos, tomando en cuenta una misma línea de referencia.

2.8. Secciones fisuradas

NEC (2015) menciona que cuando se trabajen con secciones fisuradas, deben considerarse Inercias agrietadas: 0,8Ig para columnas y 0,5Ig para vigas, por otro lado, la NSR-10, les asigna 0,7Ig a las columnas y 0,35Ig a las vigas.

2.9. Elementos Del Sistema Estructural

2.9.1. Losas

Para realizar el predimensionamiento de la losa bidireccional, inicialmente se calcula la altura de la losa bidireccional maciza mediante la siguiente formula:

$$h = \frac{l_n(800 + 0.0712fy)}{36000}$$
(1)

Obtenido el h_{min} de la losa maciza, es necesario obtener la altura mínima de la losa alivianada a partir de la equivalencia de sus inercias.

Figura 2.

Equivalencia de losas a partir de su inercia

2.9.2. Vigas

Cruz Barreto and Dieguez Mendoza (2016) definen a las vigas como elementos lineales cuya función es recibir la carga de las losas y transmitirla a otras vigas o directamente a las columnas o muros. Tienen la función sísmica junto a las columnas de resistir a los esfuerzos producto del sismo dando rigidez lateral.

2.9.2.1.Predimensionado.

Se puede tomar como predimensionamiento del peralte total, una relación de 1/10 a 1/12 de la luz libre y siendo el ancho 0.3 a 0.5 del peralte siendo un ancho mínimo 25 cm en caso de formar pórticos. Estas características se presentan en la siguiente figura:

Figura 3.

Especificaciones para elementos a flexión

Nota. Fuente: NEC-SE-HM (2015) sección 4.2.1.

2.9.2.2.Reforzamiento de vigas

Cuantía de refuerzo

Cuantía máxima y mínima de refuerzo longitudinal

Figura 4.

Consideraciones del acero longitudinal en elementos a flexión

 $M_n^- \circ M_n^+ \ge (max. M_n \text{ en la cara del nudo})/4$

Nota. Fuente: NEC-SE-HM (2015) sección 4.2.5.

Estribos para confinamientos

NEC-SE-HM (2015) establece que se debe proveer de estribos para confinamiento, de por lo menos un diámetro de 10 mm y deberán cumplir otras consideraciones que se describen en las siguientes figuras.

Figura 5.

Especificaciones para estribos en zonas de traslape

Nota. Fuente: NEC-SE-HM (2015) sección 4.2.8.

Figura 6.

Espaciamientos de estribos en vigas

Nota. Fuente: NEC-SE-HM (2015) sección 4.2.8.

2.9.3. Columnas:

Elementos estructurales que soportan tanto cargas verticales (peso propio) como fuerzas horizontales (sismos y vientos), trabajan generalmente a flexo compresión como también en algunos casos a tracción.

2.9.3.1.Predimensionado

El área de la columna de hormigón armado se puede estimar mediante la expresión siguiente:

$$Ac = \frac{Pu}{0.3 f'c} (2)$$

Pu es la carga axial última debido a las cargas verticales, para columnas que se encuentran en el centro. Se estima con la expresión:

$$Pu = Carga x$$
 Área Tributaria x N° Pisos

El área tributaria se determina trazando rectas a la mitad de las distancias de las columnas vecinas.

Ejemplo de Áreas tributarias de columnas

2.9.3.2.Reforzamiento en columnas

El cociente entre el área del refuerzo longitudinal y el área bruta de la sección no podrá ser menor que 0,01, ni mayor que 0,06. Tal como se presenta a continuación.

$$0,01 \le \frac{Pg}{Ag} \le 0,06$$

2.9.3.3.Refuerzo transversal y confinamiento

Cuantía de refuerzo

El área total de las varillas que forman estribos no puede ser menor que las siguientes:

$$A_{sh} = 0.3 \frac{sb_c f'c}{f_{yt}} \left(\frac{Ag}{A_{ch}} - 1\right)$$

$$A_{sh} = 0,09 \frac{sb_c f'c}{f_{yt}}$$

Donde:

Ash: Área total de las varillas que forman estribos, que se colocan con un espaciamiento s, y son perpendiculares a bc.

S: Separación centro a centro de estribos.

bc: Dimensión del núcleo perpendicular a las ramas de estribos cerrados de confinamiento que conforman Ash

Estas expresiones se aplican conforme a la tabla 18.7.7.4 del código ACI 318-19 para estribos cerrados de confinamiento rectilíneos.

Separación entre estribos en columnas

Las consideraciones que se deben seguir para una adecuada separación de estribos se presentan en la siguiente figura:

Figura 8.

Espaciamiento del refuerzo transversal en columnas

Nota. NEC-SE-HM (2015) sección 4.3.4.

Cuando la dimensión de la columna sea de 500 mm o superior, deberán colocarse varillas longitudinales con amarres suplementarios espaciados a no más de xi=350mm.

Figura 9.

Modelo del refuerzo transversal en columnas

Nota. Comité ACI 318. (2019), sección 18.7.5.3

2.9.4. Nudos en Pórticos Especiales Resistentes a Momento

El cortante Vu en el nudo debe estar de acuerdo con la Tabla 1.

Tabla 1.

Resistencia nominal del nudo a cortante Vn

Columno	Viga en dirección	Confinado por vigas transversal	τ <i>ε</i> λτ[1]	
Columna	de Vu	conforme con 15.2.8	v_n , w^{-1}	
	Continua o cumple	Confinada	$1.7\lambda\sqrt{f_c'}A_j$	
Continua o	con 15.2.7	No confinada	$1.3\lambda\sqrt{f_c'}A_j$	
cumple con 15.2.6	Otras	Confinada	$1.3\lambda\sqrt{f_c'}A_j$	
		No confinada	$1.0\lambda\sqrt{f_c'}A_j$	
	Continua o cumple	Confinada	$1.3\lambda\sqrt{f_c'}A_j$	
Otras	con 15.2.7	No confinada	$1.0\lambda\sqrt{f_c'}A_j$	
	Otras	Confinada	$1.0\lambda\sqrt{f_c'}A_j$	
		No confinada	$0.7\lambda\sqrt{f_c'}A_j$	

Nota. Fuente: Comité ACI 318. (2019), sección 18.8.4.3

 $^{[1]}\lambda$ es 0,75 para concreto liviano y 1,0 para concreto de peso normal, Aj se calcula con 15.4.2.4

Unidad III

3. Metodología de Análisis para Diseño Sísmico

3.1. Norma NSR-10 (Título A)

3.1.1. Zonas de Amenaza Sísmica

La NSR presenta tres zonas de amenaza sísmica dentro de las cuales puede localizarse una edificación, mismas que se encuentran clasificadas en el mapa de la figura 10.

- Zona de amenaza sísmica baja: Aa como Av son menores o iguales a 0,10
- Zona de amenaza sísmica Intermedia: Aa o Av, o ambos son mayores que 0,10 pero no exceden a 0,20.
- Zona de amenaza sísmica Alta: Aa o Av, o ambos, son mayores que 0,20.

Figura 10.

Mapa de Clasificación de Zonas de Amenaza Sísmica

Nota. Fuente: NSR-10 - Sección A.2.3

Los valores de los coeficientes se determinan a partir del número de la región en donde está localizada la edificación usando para Aa el mapa de la figura 11 y para Av, el mapa de la figura 12.

Figura 11.

Mapa de valores de Aa

Nota. NSR-10 – Capítulo A.2 Figura A.2.3-2

Figura 12.

Mapa de valores de Av

Nota. NSR-10 – Capítulo A.2 Figura A.2.3-3

3.1.2. Clasificación de los Perfiles Del Suelo

Para definir a que grupo pertenece el perfil de suelo deben considerarse aquellos valores de los parámetros del suelo que se encuentra 30 metros por encima de él. En la tabla 2 se presenta la clasificación.

Tabla 2.

Clasificación de los perfiles de suelo

Tipo de perfil	Descripción	Definición		
Α	Perfil de roca competente	v _e ≥ 1500 m/s		
В	Perfil de roca de rigidez media	1500 m/s > $\overline{v}_s \ge$ 760 m/s		
C	Perfiles de suelos muy densos o roca blanda que cumplan con el criterio de velocidad de la onda de cortante, o	760 m/s> $\overline{\mathbf{v}}_{\mathbf{S}} \ge$ 360 m/s		
C	perfiles de suelos muy densos o roca blanda que cumplan con cualquiera de los dos criterios	N ≥ 50, o S. ≥ 100 kPa (≈1 kαf/cm²)		
D	Pertiles de suelos rigidos que cumplan con e criterio de velocidad de la onda de cortante, o	360 m/s > $\overline{\mathbf{v}}_{\mathbf{S}}$ ≥ 180 m/s		
D	perfiles de suelos rígidos que cumplar cualquiera de las dos condiciones	50 > \overline{N} ≥ 15, o 100 kPa (≈1 kgf/cm²) > $\overline{s_u}$ ≥ 50 kPa (≈0.5 kgf/cm²)		
	Perfil que cumpla el criterio de velocidad de la onda de cortante, o	180 m/s > $\overline{\mathbf{v}}_{\mathbf{s}}$		
Е	perfil que contiene un espesor total H mayor de 3 m de arcillas blandas	$\frac{IP}{W} \ge 20$		
		50 kPa (≈0.50 kgf/cm²) > s.		
	Los perfiles de suelo tipo \mathbf{F} requieren una evalu geotecnista de acuerdo con el procedimiento de A $\mathbf{F_1}$ — Suelos susceptibles a la falla o colapso licuables, arcillas sensitivas, suelos dispersivo	ación realizada explícitamente en el sitio por un ingeniero .2.10. Se contemplan las siguientes subclases: o causado por la excitación sísmica, tales como: suelos os o débilmente cementados, etc.		
F	F2 — Turba y arcillas orgánicas y muy orgánicas (H > 3 m para turba o arcillas orgánicas y m orgánicas).			
	F_3 — Arcillas de muy alta plasticidad (H > 7.5 m con Índice de Plasticidad IP > 75)			
	F_{4} — Perfiles de gran espesor de arcillas de rigid	ez mediana a blanda ($H > 36 m$)		

Nota. NSR-10 - Sección A.2.4

3.1.3. Coeficientes de perfil de suelo Fa y Fv

Fa: Coeficiente de amplificación que afecta la aceleración en zonas de periodo corto.

Tabla 3.

Valores de Fa, para la zona de periodos cortos del espectro

Tipo de	Intensidad de los movimientos sísmicos						
Perfil	A _a ≤ 0.1	$A_{a} = 0.2$	$A_{a} = 0.3$	$A_{a} = 0.4$	$A_a \ge 0.5$		
Α	0.8	0.8	0.8	0.8	0.8		
В	1.0	1.0	1.0	1.0	1.0		
С	1.2	1.2	1.1	1.0	1.0		
D	1.6	1.4	1.2	1.1	1.0		
Е	2.5	1.7	1.2	0.9	0.9		
F	véase nota	vease nota	vease nota	Vease nota	vease nota		

Nota. Fuente: NSR-10 Tabla A.2.4-3

Fv: Coeficiente de amplificación que afecta la aceleración en zonas de periodo intermedios.

Tabla 4.

Valores de Fv para la zona de periodos intermedios del espectro

Tipo de		Intensidad de los movimientos sísmicos					
Perfil	$A_V \leq 0.1$	$A_{V} = 0.2$	$A_{V} = 0.3$	$A_{v} = 0.4$	$A_V \ge 0.5$		
Α	0.8	0.8	0.8	0.8	0.8		
В	1.0	1.0	1.0	1.0	1.0		
С	1.7	1.6	1.5	1.4	1.3		
D	2.4	2.0	1.8	1.6	1.5		
E	3.5	3.2	2.8	2.4	2.4		
F	véase nota	véase nota	véase nota	Véase nota	véase nota		

Nota. Fuente: NSR-10 Tabla A.2.4-4

3.1.4. Espectro de Diseño

La forma del espectro elástico de aceleraciones, Sa expresada en función de la gravedad, para un amortiguamiento del cinco por ciento (5%) del amortiguamiento crítico, que se debe utilizar en el diseño se presenta en la figura 13, y se definen ecuaciones para su determinación.

Figura 13.

Espectro de diseño elástico de aceleraciones NSR-10

Nota. Fuente: NSR-10 Figura A.2.6-1.

$$Sa = \frac{1, 2A_v F_v I}{T} \quad (3)$$

Para periodos de vibración menores de Tc (Ec. 4), se calcula el valor de Sa mediante la Ec.5, ambas se presentan a continuación.

$$Tc = 0.48 \frac{A_v F_v}{A_a F_a} \quad (4)$$
$$Sa = 2.5 A_a F_a I \quad (5)$$

Para periodos de vibración mayores que TL (Ec. 6), el valor de Sa no puede ser menor que el calculado con la ecuación 7.

$$TL = 2,4Fv (6)$$
$$Sa = \frac{1,2A_vF_vT_L.I}{T^2} (7)$$

3.1.5. Coeficiente de Importancia, I

El coeficiente de importancia I, cambia el espectro, y debido a esto modifica las fuerzas de diseño, acorde con el grupo de uso en la que esté clasificada la estructura. Los valores correspondientes de I se presentan a continuación.

Tabla 5.

Valores del coeficiente de importancia I

Grupo de Uso	Coeficiente I	
IV	1.50	
III	1.25	
II	1.10	
Ι	1.00	

Nota. Fuente: NSR-10 Sección A.2.5.2

3.1.6. Configuración estructural de la edificación

Para efectos de diseño sísmico una edificación debe clasificarse como regular o irregular tanto en planta como en elevación, o como redundante o no redundante, de acuerdo con algunos de los requisitos tales como:

3.1.6.1. Coeficiente de reducción de fuerzas sísmicas de diseño

El coeficiente R disminuye las fuerzas sísmicas de diseño, depende de la configuración estructural de la edificación y las condiciones de regularidad de la misma, se determina mediante:

R= Ro Φp Φa Φr (8)

3.1.6.2. Irregularidades en planta y elevación

Una estructura se clasifica como irregular en planta o elevación cuando cumpla con uno o varios casos que se presentan en la Tablas 6 y 7 respectivamente

Tabla 6.

Tipo	Irregularidad en planta	ФР
1aP	Irregularidad torsional	0,9
1bP	Irregularidad torsional extrema	0,8
2P	Retrocesos excesivos en esquinas	0,9
3P	Discontinuidades en el diafragma	0,9
4P	Desplazamiento del plano de acción de elementos verticales	0,8
5P	Sistemas no paralelos	0,9

Coeficiente de irregularidad en planta

Nota. NSR-10 Tabla A.3-6

Tabla 7.

Coeficiente de irregularidad en altura

Tipo	Irregularidad en altura	ФР
1aA	Piso flexible (Irregularidad en rigidez)	0,9
1bA	Piso flexible (Irregularidad extrema en rigidez)	0,8
2A	Irregularidad en la distribución de masas	0,9
3A	Irregularidad geométrica	0,9
4A	Desplazamientos dentro del plano de acción	0,8
5aA	Piso débil – Discontinuidad en la resistencia	0,9
5aA	Piso débil – Discontinuidad extrema en la resistencia	0,8

Nota. NSR-10 Tabla A.3-6

El tiempo requerido por una estructura para completar un ciclo de vibración es llamado período fundamental. A continuación, se presenta el método aproximado.

 $T_a = C_t h^{\alpha} (9)$

Ct: Coeficiente utilizado para calcular T

h: Altura total de la edificación medida desde la base

Para obtener los valores de C_t y α se utiliza la tabla 8.

Tabla 8.

Valor de Ct y a para el cálculo del periodo aproximado Ta

Sistema estructural de resistencia sísmica	Ct	α
Pórticos resistentes a momentos de concreto reforzado que resisten la totalidad de las fuerzas sísmicas y que no están limitados o adheridos a componentes más rígidos, estructurales o no estructurales, que limiten los desplazamientos horizontales al verse sometidos a las fuerzas sísmicas.	0.047	0.9
Pórticos resistentes a momentos de acero estructural que resisten la totalidad de las fuerzas sísmicas y que no están limitados o adheridos a componentes más rígidos, estructurales o no estructurales, que limiten los desplazamientos horizontales al verse sometidos a las fuerzas sísmicas.	0.072	0.8
Pórticos arriostrados de acero estructural con diagonales excéntricas restringidas a pandeo.	0.073	0.75
Todos los otros sistemas estructurales basados en muros de rigidez similar o mayor a la de muros de concreto o mampostería	0.049	0.75
Alternativamente, para estructuras que tengan muros estructurales de concreto reforzado o mampostería estructural, pueden emplearse los siguientes parámetros C_t y α , donde C_w se calcula utilizando la ecuación A.4.2-4.	$\frac{0.0062}{\sqrt{C_{\rm W}}}$	1.00

Nota. NSR-10 Sección A.4.2.2

3.1.8. Fuerzas Sísmicas Horizontales Equivalente

El cortante basal Vs, equivalente a todos los efectos inerciales horizontales producto del sismo de diseño para una dirección de estudio específica, se calcula con la siguiente ecuación:

 $V_s = S_a g M (10)$

M: Masa total de la estructura incluyendo la masa de muros divisorios y particiones.

Donde el valor de S_a corresponde a la aceleración obtenida en el espectro de diseño para un periodo T (Periodo de vibración de la estructura). La fuerza sísmica horizontal, para cualquier nivel de x, considerando una dirección de estudio, se determinada mediante:

$$F_x = C_{vx}V_s \quad (11)$$

Donde C_{vx} es el coeficiente de fuerza de piso y se expresa mediante:

$$C_{vx} = \frac{m_x h_x^k}{\sum_{i=1}^n (m_x h_x^k)} \ (12)$$

Tabla 9.

Coeficiente de Fuerza de Piso Cvx

	Coeficiente de fuerza de piso Cvx	
m_x	Parte de la masa colocada en el nivel x	
h_x	Altura en metros medida desde la base	
k ^a	Coeficiente relacionado con T	

Nota. NEC-15, NEC-SE-DS, p. 67

^a Para T<0,5 k=1; para 0,5 <T≤2,5 K=0,75+0,50T; para T>2,5 K=2

Finalmente, para el diseño de elementos y conexiones, deben determinarse las fuerzas reducidas de diseño, dividiendo la fuerza sísmica de diseño entre el coeficiente de capacidad de disipación de energía R, por tanto:

$$E = \frac{Fs}{R} \quad (13)$$

3.1.9. Dirección de Aplicación de las Fuerzas Sísmicas

En zonas sísmicas intermedias o altas deben tomarse necesariamente en cuenta efectos ortogonales, donde el 100% de las fuerzas sísmicas actúan en una dirección y un 30% de éstas actúan en la dirección perpendicular.

3.1.10. Límites de la Deriva Máxima de Piso

La deriva máxima que puede tener cualquier piso debe ser menor que los límites que se presentan en la tabla 10, además esta se expresa como porcentaje de la altura de piso.

Tabla 10.

Derivas máximas como porcentaje de hpi

Tipo de estructura	Deriva Máxima	
Concreto reforzado, metálicas, madera, y de mampostería que cumpla con A.6.4.2.2.	$1.0\%(\Delta_{máx}^{i} \le 0.010 h_{pi})$	
De mampostería conforme con A.6.4.2.3.	$0.5\%(\Delta_{máx}^{i} \le 0.005 h_{pi})$	

Nota. NSR - 10 Sección A.6.4.1

3.2.Norma NEC-15 SE - DS

3.2.1. Zonas de Amenaza Sísmica

NEC (2015), en su capítulo de peligro sísmico establece seis zonas sísmicas, a las cuales asigna un factor de zona "z", que representa la aceleración máxima en roca que se puede esperar para un sismo de diseño, y es expresada en función de la aceleración de la gravedad. En la Figura 14 se establecen los seis tipos de zonas sísmicas del Ecuador.

Figura 14.

Mapa de zonas sísmicas y factor de zona z

Nota. NEC (2015), NEC-SE-DS, p. 27.

A continuación, se detallan en la tabla 11, el factor Z para cada una de las zonas sísmicas.

Tabla 11.

Valores de Z en función de la zona sísmica

Zona Sísmica	Ι	II	III	IV	V	VI
Valor de Z	0.15	0.25	0.30	0.35	0.40	\geq 0.50
Peligro sísmico	Intermedio	Alto	Alto	Alto	Alto	Muy Alto

Nota. NEC (2015), NEC-SE-DS, p. 27.
NEC (2015) clasifica a los perfiles de suelo en seis tipos, A, B, C, D, E, F. Los criterios empleados para la clasificación de los primeros cinco perfiles corresponden a valores de parámetros del suelo que se encuentra 30 m por encima del perfil. Se exceptúa al suelo F, debido a que para poder determinarlo se deben hacer investigaciones específicas de carácter geotécnico al suelo. En la tabla 12 se describen los tipos de perfiles de suelo de manera más detallada.

Tabla 12.

Tipo perfil	de	Descripción	Definición		
А		Perfil de roca competente	V _s ≥ 1500 m/s		
в		Perfil de roca de rigidez media	1500 m/s >V _s ≥ 760 m/s		
с		Perfiles de suelos muy densos o roca blanda, que cumplan con el criterio de velocidad de la onda de cortante, o	760 m/s > V₅≥ 360 m/s		
		Perfiles de suelos rígidos que cumplan con el criterio de velocidad de la onda de cortante, o	360 m/s > V _s ≥ 180 m/s		
D		Perfiles de suelos rígidos que cumplan cualquiera de las dos	50 > N ≥ 15.0		
		condiciones	100 kPa > Su≥ 50 kPa		
		Perfil que cumpla el criterio de velocidad de la onda de cortante, o	Vs < 180 m/s		
E			IP > 20		
		Perfil que contiene un espesor total H mayor de 3 m de arcillas blandas	w ≥ 40%		
			S ₂ < 50 kPa		
		Los perfiles de suelo tipo F requieren una evaluación realizada exp ingeniero geotecnista. Se contemplan las siguientes subclases:	lícitamente en el sitio por un		
		F1—Suelos susceptibles a la falla o colapso causado por la excitació licuables, arcillas sensitivas, suelos dispersivos o débilmente cementa	ción sísmica, tales como; suelos entados, etc.		
		F2—Turba y arcillas orgánicas y muy orgánicas (H > 3m para turb orgánicas).	a o arcillas orgánicas y muy		
F		F3-Arcillas de muy alta plasticidad (H > 7.5 m con índice de Plasticio	ad IP > 75)		
		F4-Perfiles de gran espesor de arcillas de rigidez mediana a blanda	(H > 30m)		
		F5—Suelos con contrastes de impedancia α ocurriendo dentro de l del perfil de subsuelo, incluyendo contactos entre suelos blandos y r de velocidades de ondas de corte.	os primeros 30 m superiores oca, con variaciones bruscas		
		F6-Rellenos colocados sin control ingenieril			

Tipos de perfiles de suelo

Nota. NEC (2015), NEC-SE-DS, p. 30.

3.2.3. Coeficientes de Perfil de Suelo

Conocidos el valor correspondiente de "z" y el perfil de suelo donde se va a emplazar la estructura se deben seleccionar los valores de los coeficientes de perfil de suelo, estos son:

Fa: Coeficiente de amplificación de suelo en zona de periodos cortos

Tabla 13.

Valores de Fa según la zona sísma y el perfil de suelo

	Zona sísmica y factor Z					
Tipo de perfil del subsuelo	1	н	ш	IV	v	VI
	0.15	0.25	0.30	0.35	0.4	≥0.5
A	0.9	0.9	0.9	0.9	0.9	0.9
в	1	1	1	1	1	1
С	1.4	1.3	1.25	1.23	1.2	1.18
D	1.6	1.4	1.3	1.25	1.2	1.12
E	1.8	1.4	1.25	1.1	1.0	0.85
,	Véase Tab	la 2 : Clasi	ficación de	los perfiles	de suelo y	la secció
F			10.	5.4		

Nota. NEC (2015), NEC-SE-DS, p. 31.

Fd: Coeficiente de amplificación de suelo

Tabla 14.

Valores de Fd según la zona sísma y el perfil de suelo

		Zo	ona sísmica	a y factor Z	2	
Tipo de perfil del subsuelo	I.	п	ш	IV	v	VI
	0.15	0.25	0.30	0.35	0.4	≥0.5
Α	0.9	0.9	0.9	0.9	0.9	0.9
в	1	1	1	1	1	1
С	1.36	1.28	1.19	1.15	1.11	1.06
D	1.62	1.45	1.36	1.28	1.19	1.11
E	2.1	1.75	1.7	1.65	1.6	1.5
F	Véase 1	abla 2 : Cl	asificación	de los perfil	es de suelo	o y 10.6.4

Nota. NEC (2015), NEC-SE-DS, p. 31.

Fs: Coeficiente de amplificación de suelo

Tabla 15.

Valores de Fs según la zona sísma y el perfil de suelo

		Z	ona sísmic	a y factor 2	Z	
Tipo de perfil del subsuelo	I.	н	ш	IV	v	VI
	0.15	0.25	0.30	0.35	0.4	≥0.5
A	0.75	0.75	0.75	0.75	0.75	0.75
в	0.75	0.75	0.75	0.75	0.75	0.75
С	0.85	0.94	1.02	1.06	1.11	1.23
D	1.02	1.06	1.11	1.19	1.28	1.40
E	1.5	1.6	1.7	1.8	1.9	2
F	Véase <u>T</u> a	abla 2 : Cla	asificación d	le los perfil	es de suelo	y 10.6.4

Nota. NEC (2015), NEC-SE-DS, p. 32.

3.2.4. Espectro de Respuesta Elástico de Aceleraciones

Se expresa como fracción de la aceleración de la gravedad, tomando en cuenta un nivel de sismo de diseño. Para su construcción debe determinarse parámetros como el valor de z, el tipo de suelo y los coeficientes de suelo antes mencionados.

Figura 15.

Espectro de diseño en aceleraciones NEC-15

Nota. NEC (2015), NEC-SE-DS, p. 33.

Los parámetros para construir el espectro se presentan en la tabla 16.

Tabla 16.

Parámetros para construir el Espectro de Diseño

Símbolo	Definición
	Sus valores dependen de la región del Ecuador.
ц	Región Costa, excepto la provincia de Esmeraldas, η= 1.80
п	Región Interandina, Esmeraldas y Galápagos, η= 2.48
	Región Amazónica, η = 2.60
Т	Período de vibración de la estructura
То	Límite inferior y superior de la meseta del espectro de diseño en
Tc	aceleraciones
р	Todos los perfiles de suelos, exceptuando el tipo E, r=1
ĸ	Perfil de suelo tipo E, $r = 1.5$

Nota. NEC (2015), NEC-SE-DS, p. 33-34.

Para la construcción del espectro elástico de aceleración se presentan las siguientes ecuaciones

$$Sa = \eta. z. Fa \quad para \ 0 \le T \le Tc \ (14)$$
$$Sa = \eta. z. Fa. \left(\frac{Tc}{T}\right)^r \quad (15)$$
$$Tc = 0.55. Fs. \frac{Fd}{Fa} \ (16)$$

3.2.5. Obtención del Periodo de Vibración T

El periodo aproximado se obtiene mediante:

$$T = C_t h n^{\alpha}$$
 (17)

Ct y a: Coeficientes según el sistema estructural

hn: Altura máxima de la edificación, medida desde su base.

Tabla 17.

Valores de Ct y a según la tipología de la estructura

Tipo de estructura	Ct	α
Estructuras de acero		
Sin arriostramientos	0.072	0.8
Con arriostramientos	0.073	0.75
Pórticos Especiales de H.A.		
Sin muros estructurales, ni diagonales rigidizadoras	0.055	0.9
Con muros estructurales o diagonales rigidizadoras, y	0.055	0.75
otras estructuras como muros y mampostería estructural	0.055	0.75

Nota. NEC-15, NEC-SE-DS, p. 62

3.2.6. Coeficiente de Importancia

Incrementa la demanda sísmica de diseño de la estructura, que debido a las características de esta debe permanecer operativa o sufrir daños menores, cuando se presente el sismo de diseño.

Tabla 18.Valores del coeficiente I por categorías.

Categoría	Coeficiente I
Edificaciones Esenciales	1.50
Edificaciones Especiales	1.30
Otras Edificaciones	1.00

Nota. Fuente: NEC-15, NEC-SE-DS, p. 39.

3.2.7. Factor de Reducción de Fuerzas Sísmicas de Diseño

El factor R permite que las fuerzas sísmicas de diseños presenten una gran disminución, siempre y cuando las estructuras y sus conexiones sean diseñadas de tal manera que presenten una adecuada ductilidad.

Tabla 19.

Valores del coeficiente R para sistemas estructurales dúctiles

Sistemas Estructurales Dúctiles	R
Sistemas Duales	
Pórticos especiales sismorresistentes de Hormigón Armado con vigas	8
peraltadas y muros estructurales o con diagonales rigidizadoras	
Pórticos especiales sismorresistentes de Acero, con diagonales	8
rigidizadoras o muros estructurales	
Pórticos con columnas de hormigón armado, y vigas de acero con	8
diagonales rigidizadoras	
Pórticos especiales sismorresistentes de Hormigón Armado con vigas	7
banda, con muros estructurales o con diagonales rigidizadoras	
Pórticos resistentes a momentos	
Pórticos especiales sismorresistentes de Hormigón Armado con vigas	8
peraltadas	
Pórticos especiales sismorresistentes de Acero o con elementos	8
armados de placa	
Pórticos con columnas de hormigón armado, y vigas de acero	8

Nota. NEC-15, NEC-SE-DS, p. 65.

3.2.8. Coeficientes de Configuración Estructural

Estos coeficientes penalizan al diseño de estructuras, con el objetivo de tomar en cuenta irregularidades en planta o elevación, ya que estas son responsables del comportamiento deficiente de la estructura en caso de un sismo.

Tabla 20.

Coeficiente de regularidad en planta

Tipo	Irregularidad en planta	ФРі
1	Irregularidad Torsional	0,9
2	Retrocesos excesivos en esquinas	0,9
3	Discontinuidades en el sistema de piso	0,9
4	Ejes estructurales no paralelos	0,9

Nota. NEC-15, NEC-SE-DS, p. 50

Tabla 21.

Coeficiente de regularidad en elevación

Tipo	Irregularidad en elevación	ФЕі
1	Piso Flexible	0,9
2	Distribución de masa	0,9
3	Irregularidad geométrica	0,9

Nota. NEC-15, NEC-SE-DS, p. 51

3.2.9. Carga Sísmica Reactiva

Carga reactiva de sismo tal que W= D Donde: D es la carga muerta total, para ser conservador W será la que define NEC en casos especiales como bodegas y almacenajes. (W=D+0,25Li).

3.2.10. Cortante Basal de Diseño

El cortante o la fuerza cortante basal de diseño V, aplicado en una dirección especifica de la estructura se determinada mediante:

$$V = \frac{ISa(Ta)}{R\phi P\phi E}W$$
 (18)

Tabla 22.

Símbolo	Significado
V	Fuerza cortante basal de diseño.
Sa(Ta)	Espectro de diseño en aceleraciones.
Та	Periodo de vibración de la estructura.
Ι	Coeficiente de Importancia.
R	Coeficiente de reducción de Fuerzas sísmicas de diseño.
$\phi P, \phi E$	Coeficientes de irregularidad en planta y elevación.
W	Carga sísmica (D+0,25L).

Fuerza Cortante basal de diseño

Nota. NEC-15, NEC-SE-DS, p. 61

3.2.11. Distribución de Fuerzas Sísmicas Laterales

$$V = \sum_{i=x}^{n} Fi ; \quad Vx = \sum_{i=x}^{n} Fi ; \quad Fx = \frac{w_{x} h_{x}^{\ k}}{\sum_{i=x}^{n} w_{i} h_{i}^{\ k}} \quad (19)$$

Tabla 23.

Distribución de fuerzas sísmicas laterales

Símbolo	Significado	
W _x	Peso del x de la estructura, incluye 25% de la carga viva	
w _i	Peso del piso i de la estructura, incluye 25% de la carga viva	
h_{χ}	Altura al piso x de la estructura	
h_i	Altura al piso i de la estructura	
k^{a}	Coeficiente que depende de T.	

Nota. (NEC-SE-DS, 2015, pág. 67).

^a Para T<0,5 k=1; para 0,5 <T≤2,5 K=0,75+0,50T; para T>2,5 K=2

3.2.12. Efectos de Segundo Orden P-∆ e Índice De Estabilidad Qi

Son efectos que básicamente aumentan los momentos producto de las combinaciones a nivel de cargas últimas. Estos son significantes cuando Qi > 0,1.

$$Qi = \frac{Pi\Delta i}{Vi hi} \quad (20)$$

Tabla 24.

Índice de estabilidad Qi

	Índice de estabilidad Qi							
Qi	Relación entre el momento de segundo orden y el de							
	primer orden, debe ser menor a 0,3							
Pi	Total de carga sin mayorar de un piso i considerado.							
Δi	Deriva de un piso i considerado							
Vi	Fuerza cortante de un piso i considerado							
hi	Altura de un piso i considerado.							

Nota. NEC-15, NEC-SE-DS, p. 68

3.2.13. Límites de Deriva

En una estructura la máxima deriva inelástica que es permitida, se calcula mediante la siguiente expresión:

$$\Delta M = 0,75 \text{R} \Delta E \quad (21)$$

Ésta debe ser menor que la deriva máxima, que se especifica en la tabla 25.

Tabla 25.

Límites de deriva *ΔM* máxima

Estructuras de:	ΔM máxima
Hormigón Armado, metálicas y madera	0,02
Mampostería	0,01

Nota. NEC-15, NEC-SE-DS, p. 40

Unidad IV

4. Prediseño de la estructura y obtención de fuerzas de diseño

4.1. Especificaciones del Hormigón

Con relación al hormigón, en este trabajo se optó por escoger un hormigón de peso normal, con un f°c = 240 kg/cm^2 , así mismo su módulo queda determinado por:

$$15100\sqrt{f'c}$$
; $15100\sqrt{240} = 233928,19 \ kg/cm^2$

4.2. Combinaciones de Carga

Para el análisis se emplean las siguientes combinaciones:

- 1,4D
- 1,2D+1,6L
- 1,2D+L±E
- 0,9D±E

4.3. Predimensionamiento de Elementos del Sistema Estructural

4.3.1. Losa

$$h = \frac{l_n(800 + 0.0712fy)}{36000}$$

$$l_n = 5,00 = 500 \text{ cm}; \text{ fy} = 4200 \text{ kg/cm}^2$$

$$h = \frac{500(800 + 0.0712(4200))}{36000} = 15,26 \ cm \approx 16 \ cm$$

Se utiliza el Teorema de Steiner, para determinar el espesor h equivalente de losa alivianada a maciza. Se propone una losa alivianada de 25 cm de espesor.

Tabla 26.

Teorema de Steiner para equivalencia de inercia

Elemento	В	Н	А	У	A.y	ÿ	y - y	$(y - \bar{y})^2$	Ib
Losa	50	5	250	23	5625	16.04	5,56	30,86	8236,88
Vigueta	10	20	200	10	2000	10,94	-6,94	48,23	16311,73
Σ	-	-	450	-	7625	-	-	-	24548,61

La inercia Ib queda determinada por Ib= 24548,61 cm⁴

Al resolver la equivalencia de Inercias de losas se obtiene.

$$Ia = I + A. d^{2}; \quad Ia = \frac{b.h \ equiv^{3}}{12}$$
$$h \ equiv = \sqrt[3]{\frac{12.I}{50}} = \sqrt[3]{\frac{12(24548,61)}{50}}; \quad h \ equiv = 18,06 \ cm \quad OK$$

La loseta será de 5cm, las viguetas poseen un ancho de 10 cm, y una separación centro a centro de 50 cm.

4.3.2. Vigas

$$h = \frac{ln}{12}$$
; $h = \frac{500}{12} = 45 \ cm$

La base mínima es equivalente al 30% o 50% del peralte de la viga, por tanto:

$$b = \frac{h}{2}$$
; $h = \frac{45}{2} = 22,5 = 25 \ cm$

Sección preliminar de Viga de 25x45

4.3.3. Columnas

Tabla 27.

Distribución de carg	as en la estructura
----------------------	---------------------

Cargas (Kg	/m2)	Distribución (m2)	Carga Tributaria (Kg)
Carga Viva (Vivier	nda) 200	20,2	4040
Carga Viva (Cubier	rta) 70	20,2	1414
Nervios	96	20,2	1939,2
Placa de losa	120	20,2	2424
Rec. Piso	125	20,2	2525
Rec. Pared	50	20,2	1010
Mampostería	150	20,2	3030
Rec. Cielo Raso	50	20,2	1010
Instalaciones	50	20,2	1010
Vigas (Piso 1-3)	149,76	20,2	3025,15
Vigas (Piso 4-5)	133,12	20,2	2689,02
F	Pu=1,2D+1,6I	<u>ـ</u>	115273,8

Para las columnas críticas que son las que están en el interior de la planta, se escoge a la que reciba mayor tributación, de ahí que las sumas de las cargas tributarias multiplicada por el número de pisos dan un valor de Pu= 115273,8 Kg. Considerando que se tienen columnas cuadradas se obtiene:

$$Ac = \frac{115273,8}{0,30 \ x \ 240} = 1601,03 \ cm^2$$
; $a = b = \sqrt{1122,543} = 40,01 \ cm$

Preliminarmente se adoptan columnas de 40x40, mismas que disminuirán 5 cm en cada cara, después de 2 plantas.

D	Sección de	Peso	Distribución	Carga Tributaria
P1SO (columnas (cm)	(kg/m2)	(m2)	(Kg)
1	40x40	109,226	20,2	2206,379
2	40x40	109,226	20,2	2206,379
3	35x35	83,626	20,2	1689,259
4	35x35	83,626	20,2	1689,259
5	30x30	61,440	20,2	1241,088
	Pu Col= 1,2 Tota	10838,835		

Tabla 28.

Secciones de columnas y carga tributaria

Se adiciona El Pu de las columnas al valor de Pu calculado anteriormente y se chequea nuevamente las dimensiones de la columna.

$$Ac = \frac{115273,8 + \text{Pu Col}}{0,30 \ x \ 240} ; \quad Ac = \frac{115273,8 + 10838,835}{0,30 \ x \ 240} ; \quad Ac = 1751,564 \ cm^2$$
$$a = b = \sqrt{1751,564} = 42 \ cm$$

Preliminarmente columnas de 45x45 en planta baja

Tabla 29.

Secciones preliminares de Columnas y Vigas; y Cargas por piso

	Sección de	Sección		Sobrecarga	Corres Wine	
Piso	columnas	de Vigas		Muerta		
	(cm)	(cm)	(kg/m2)	(kg/m2)	(kg/m2)	
5	35x35	25x40	86,746	316	70	
4	40x40	25x40	161,516	641	200	

3	40x40	25x45	163,906	641	200
2	45x45	25x45	167,583	641	200
1	45x45	25x45	167,583	641	200

4.4.Obtención de Fuerzas de Diseño NSR-10

4.4.1. Determinación de Aa y Av

Tabla 30.

Valores de Aa y Av del Municipio de Quibdó.

Municipio	Código Municipio	Aa	A_{v}	Zona de Amenaza Sísmica
Quibdó	27001	0.35	0.35	Alta

Nota. NSR-10 Titulo A, Anexo A-161

4.4.2. Cálculo de los Coeficientes Fa y Fv

Para un suelo tipo C, con Av y Av= 0,35 se obtiene Fa= 1,05 y Fv= 1,45

4.4.3. Factor de Importancia

Se toma de la tabla A.2.5-1 de la NSR-10 Título A, para este caso I = 1

4.4.4. Cálculo de Tc y TL Periodos Límites de Vibración

$$Tc = 0.48 \frac{A_v F_v}{A_a F_a}; \ Tc = 0.48 \frac{0.35(1.45)}{0.35(1.05)}; \ Tc = 0.6629 \ seg$$
$$TL = 2.4Fv; \ TL = 2.4(1.45); \ TL = 3.48 \ seg$$

4.4.5. Cálculo de Sa

$$Sa = 2,5 A_a F_a I$$
; $Sa = 2,5(0,35)(1,05)(1)$; $Sa = 0,9188$

Para periodos intermedios de vibración se emplea la ecuación A.2.6-1

$$Sa = \frac{1,2 A_v F_v I}{T}$$
; $Sa = \frac{1,2 (0,5)(1,3)(1)}{T}$

Para obtener el espectro de diseño se dan valores a T, que van desde cero hasta un periodo límite de vibración TL.

4.4.6. Espectro de Diseño NSR-10

Figura 16.

Espectro de diseño del Municipio Quibdó, para un suelo Tipo C

4.4.7. Cálculo del Periodo de Vibración de la Estructura Ta

La estructura tiene cinco plantas con alturas de piso de 3m, por ende, la altura total es de h= 15 m. Los coeficientes Ct y α se obtienen de la tabla A.4.2-1,

$$T_a = C_t h^{\alpha}$$
; $T_a = 0.047(15)^{0.9}$; $Ta = 0.538 seg$

4.4.8. Cálculo del Cortante Sísmico

Para el espectro de diseño determinado en la figura 16 y el período aproximado Ta=0.5377 s, se obtiene Sa=0,918 g. Con este valor se puede calcular el cortante basal, aplicando la Ecuación 8.

$$V_s = S_a g M$$

El peso total de la estructura será obtenido por medio de Etabs mediante un caso de carga igual (D+0,25L), mismo que es igual a 768,75 Toneladas.

$$V_s = S_a g M = S_a W$$
; $V_s = 0.9188(768.75)$; $V_s = 706.33 Ton$

El Vs reducido se obtiene al dividir Vs entre R, Ro para pórtico DES es igual a 7, y los coeficientes de altura y planta corresponden a una estructura regular.

Tabla 31.

Distribución de Fuerzas Horizontales equivalentes a cada piso.

TABLE: Story Forces								
Story	Output Case	Location	Р	Р	Peso			
			tonf	por piso	por m2			
Story5	Live	Bottom	11.8125	11.81	0.07			
Story4	Live	Bottom	45.5625	33.75	0.2			
Story3	Live	Bottom	79.3125	33.75	0.2			
Story2	Live	Bottom	113.0625	33.75	0.2			
Story1	Live	Bottom	146.8125	33.75	0.2			

TABLE: Story Forces					Carga	Sísmica	
Story	Output Case	Location	Р	Р	Peso	W=D	0+0,25L
			tonf	por piso	por m2	Story5	93.334
Story5	CM	Bottom	90.381	90.38	0.54	Story4	164.444
Story4	CM	Bottom	246.3878	156.01	0.92	Story3	167.276
Story3	CM	Bottom	405.2265	158.84	0.94	Story2	171.848
Story2	CM	Bottom	568.6372	163.41	0.97	Story1	171.848
Story1	CM	Bottom	732.048	163.41	0.97	Total	768.75

Datos									
Aa=	0.35	To=	0.138	α=	0.9	Фр=	1	R=	7
Av=	0.35	Tc=	0.662	Sa(Ta)=	0.918	Φr=	1	k=	1.018
Fa=	1.05	Ct=	0.055	Ta=	0.538	I=	1	Cs=	0.131
Fv=	1.45	hn=	15	Фa=	1	Ro=	7	Vs(Ton)=	100.9

Fuerzas Sísmicas Horizontales Equivalentes											
Alturas	Piso	hi	wi	wi.hi^k	wi.hi^k/\screwi.hi^k	Fi	Vx	0,3*Fx			
3	5	15	93.334	1473.43	0.220	22.177	22.177	6.653			
3	4	12	164.444	2068.086	0.309	31.127	53.304	9.338			
3	3	9	167.276	1569.232	0.234	23.619	76.923	7.086			
3	2	6	171.848	1066.555	0.159	16.053	92.976	4.816			
3	1	3	171.848	526.346	0.079	7.922	100.898	2.377			

4.5.1. Parámetros para Obtención del Espectro de Diseño

Considerando que la estructura se va a emplazar en el cantón Santa Elena, Provincia de Santa Elena, que conforma la Zona VI, con un peligro sísmico alto, z=0,5g y con un suelo tipo C. Los demás parámetros se muestran en la tabla 32.

Tabla 32.

Parámetros para obtención del Espectro de diseño de NEC-15.

Date	OS
z=	0,5
r=	1
Fa=	1,18
Fd=	1,06
Fs=	1,23
n=	1,8
To=	0,11
Tc=	0,608
I=	1

4.5.2. Obtención de los Períodos Límites de Vibración

Los períodos libres de vibración To y Tc se calculan a través de:

$$To = 0.1Fs \frac{Fd}{Fa}; \quad To = \frac{0.1(1.23)(1.06)}{1.18}; \quad To = 0.110$$
$$Tc = 0.55Fs \frac{Fd}{Fa}; \quad Tc = \frac{0.55(1.23)(1.06)}{1.18}; \quad Tc = 0.608$$

4.5.3. *Cálculo de Sa(g)*

$$Sa(g) = \eta z Fa; Sa(g) = 1,8(0,5)(1,18); Sa(g) = 1,062$$

Para la parte del espectro donde T > Tc S(a)g se obtiene mediante la siguiente expresión:

$$Sa(g) = \eta z Fa\left(\frac{Tc}{T}\right)^{\prime}$$

4.5.4. Espectro de Diseño

Para obtener el espectro de diseño se dan valores a T, que van desde cero hasta un periodo límite de vibración TL. Este se presenta en la figura 17.

Figura 17.

Espectro de diseño Santa Elena, para un suelo Tipo C

4.5.5. Cálculo del Periodo de Vibración Ta

La estructura tipo tiene cinco plantas con alturas de piso de 3m, por ende, altura total es de h=15 m. Los coeficientes Ct y α se obtienen de la Ec. 14.

$$T_a = C_t h^{\alpha}$$
; $T_a = 0,055(15)^{0.9}$; $Ta = 0,629 seg$

Para el espectro de diseño determinado en la figura 19, con el período aproximado Ta=0.629 s, se obtiene Sa=1,025 g.

4.5.6. Cortante Basal de Diseño

Considerando el coeficiente R=8, la aceleración espectral Sa=1,025, el factor de importancia para la estructura de ocupación normal I=1, y $\Phi P = \Phi E = 1$

Tabla 33.

Distribución de Fuerzas Horizontales equivalentes a cada piso.

Story Forces				
Output Case	Location	Р	Р	Peso
		tonf	por piso	por m2
Live	Bottom	11.8125	11.81	0.07
Live	Bottom	45.5625	33.75	0.2
Live	Bottom	79.3125	33.75	0.2
Live	Bottom	113.0625	33.75	0.2
Live	Bottom	146.8125	33.75	0.2
	Story Forces Output Case Live Live Live Live Live	Story ForcesOutput CaseLocationLiveBottomLiveBottomLiveBottomLiveBottomLiveBottom	Story ForcesOutput CaseLocationPtonfLiveBottomLiveBottomLiveBottomLiveBottomLiveBottomLiveBottomLiveBottomLiveBottomLiveBottomLiveBottomLiveBottomLiveBottomLiveBottomLiveBottomLiveBottom	Story Forces P Output Case Location P tonf por piso Live Bottom 11.8125 Live Bottom 45.5625 33.75 Live Bottom 79.3125 33.75 Live Bottom 113.0625 33.75 Live Bottom 146.8125 33.75

TABLE:	Story Forces	Carga	Sísmica					
Story	Output Case	Location	Р	P Peso		W=D	+0,25L	
			tonf	por piso	por m2	Story5	93.334	
Story5	CM	Bottom	90.381	90.38	0.54	Story4	164.444	
Story4	CM	Bottom	246.3878	156.01	0.92	Story3	167.276	
Story3	CM	Bottom	405.2265	158.84	0.94	Story2	171.848	
Story2	CM	Bottom	568.6372	163.41	0.97	Story1	171.848	
Story1	CM	Bottom	732.048	163.41	0.97	Total	768.75	

Datos									
z=	0.5	Fs=	1.23	r=	1	Φe=	1	R=	8
η=	1.8	Ct=	0.055	Sa(Ta)=	1.026	tc=	0.608	k=	1.065
Fa=	1.18	hn=	15	Ta=	0.629	to=	0.110	Cs=	0.128
Fd=	1.06	α=	0.9	Фр=	1	I=	1	Vx(Ton)=	98.552

Fuerzas S	Sísmica	as Ho	orizontales	Equivalentes				
Alturas	Piso	hi	wi	wi.hi^k	wi.hi^k/∑wi.hi^k	Fi	Vx	0,3*Fx
3	5	15	93.334	1667.840	0.224	22.118	22.118	6.635
3	4	12	164.444	2317.172	0.312	30.729	52.847	9.219
3	3	9	167.276	1735.238	0.233	23.012	75.859	6.904
3	2	6	171.848	1157.700	0.156	15.353	91.212	4.606
3	1	3	171.848	553.487	0.074	7.340	98.552	2.202

Unidad V

5. Chequeo de Condiciones de Regularidad de la Estructura; y Diseño Final de

Elementos del Sistema Estructural con ACI318-19

5.1. Modelado de la Estructura en Etabs v.18

5.1.1. Descripción de la estructura:

La estructura considerada en la investigación para su análisis corresponde a una de 5 pisos, destinada a uso residencial, con 4 pórticos de hormigón armado en cada eje. Las dimensiones de los ejes son de 12,5m en x, y 13,5m en el eje x. Las alturas de piso corresponden a 3m, el f'c del hormigón es de 240 Kg/cm2.

Figura 18.

Modelación de la Estructura en Etabs V.18

Las cargas correspondientes a la losa bidireccional se han asignadas a las vigas, tal como se puede apreciar en la figura 19.

Figura 19.

Vista en Elevación de la Estructura, sentido x e y

Es importante mencionar que primero se chequearán las condiciones de regularidad para la estructura analizada con NEC, y a partir de las secciones finales obtenidas se comparará si estas cumplen las condiciones de regularidad con la NSR-10. Es por esto que las fuerzas sísmicas de diseño obtenidas anteriormente con los parámetros de NSR-10 sirvieron para clarificar el proceso de obtención de las mismas. Sin embargo, estás fueron recalculadas hasta conseguir secciones de vigas y columnas que cumplan con los criterios antes mencionados.

5.2. Chequeo de Derivas de Piso (NEC-15)

Tabla 34.

Derivas de Piso de la Estructura Prediseñada y modelada en Etabs v.18

Story Label	Orteret Care	Casa Tara	Ux	Uy	Driftx	Drift y	δ	ΔΕ	hsi	ΔΕ	AM_0 75D AF		Δe/Δep	orom	Deriva	ΔM máxima	
Story		Output Case	Case Type	m	m	m	m	m	m	m	m/m	ам=0,/5кае	дергот	≤1,2?		< 2%	
Story5	13	-Ex2+0,3Ey2	LinStatic	-0.0398	0.017725	-0.005501	0.0025	0.0436	0.0060	3	0.0020	0.0120	0.0022	0.92	OK	1.205%	ОК
Story5	16	-Ex2+0,3Ey2	LinStatic	-0.048439	0.017725	-0.006673	0.0025	0.0516	0.0071	3	0.0024	0.0142	0.0022	1.08	OK	1.422%	ОК
Story4	13	-Ex2+0,3Ey2	LinStatic	-0.034299	0.015273	-0.008267	0.0037	0.0375	0.0091	3	0.0030	0.0181	0.0033	0.92	OK	1.810%	ОК
Story4	16	-Ex2+0,3Ey2	LinStatic	-0.041766	0.015273	-0.010048	0.0037	0.0445	0.0107	3	0.0036	0.0214	0.0033	1.08	OK	2.141%	NO CUMPLE
Story3	13	-Ex2+0,3Ey2	LinStatic	-0.026032	0.011585	-0.010356	0.0046	0.0285	0.0113	3	0.0038	0.0227	0.0041	0.92	OK	2.268%	NO CUMPLE
Story3	16	-Ex2+0,3Ey2	LinStatic	-0.031718	0.011585	-0.012608	0.0046	0.0338	0.0134	3	0.0045	0.0269	0.0041	1.08	OK	2.685%	NO CUMPLE
Story2	13	-Ex2+0,3Ey2	LinStatic	-0.015676	0.006969	-0.009884	0.0044	0.0172	0.0108	3	0.0036	0.0216	0.0039	0.92	OK	2.164%	NO CUMPLE
Story2	16	-Ex2+0,3Ey2	LinStatic	-0.01911	0.006969	-0.012034	0.0044	0.0203	0.0128	3	0.0043	0.0256	0.0039	1.08	OK	2.563%	NO CUMPLE
Story1	13	-Ex2+0,3Ey2	LinStatic	-0.005792	0.00257	-0.005792	0.0026	0.0063	0.0063	3	0.0021	0.0127	0.0023	0.91	OK	1.267%	ОК
Story1	16	-Ex2+0,3Ey2	LinStatic	-0.007076	0.00257	-0.007076	0.0026	0.0075	0.0075	3	0.0025	0.0151	0.0023	1.09	OK	1.506%	ОК
Base	13	-Ex2+0,3Ey2	LinStatic	0	0	-	-	-	-	-	-	-	-	-	-	-	-
Base	16	-Ex2+0,3Ey2	LinStatic	0	0	-	-	-	-	-	-	-	-	-	-	-	-

En la tabla 34 se puede apreciar que las derivas calculadas son mayores que Δm máxima, por tanto, se escogen nuevas secciones de vigas y columnas, mismas que se detallan en la tabla 35, adicionalmente la tabla anterior también presenta el chequeo de la torsión excesiva, evidenciándose que en ninguno de los casos $\frac{\Delta_e}{\Delta_{eprom}}$ resulta mayor que 1.2, justificando de esta manera que la estructura es completamente regular en planta.

Tabla 35.

Secciones finales de Vigas y Columnas

Piso	Sección de Columnas (cm)	Sección de Vigas (cm)
5	40X40	25x45
4	45x45	25x45
3	45x45	25x50
2	50x50	25x50
1	50x50	25x50

Se vuelven a chequear las derivas de piso, obteniéndose los siguientes resultados:

Tabla 36.

Chequeo Final de Derivas de piso (NEC-15)

Story	Story Label Output Case	Output Case	Case Type	Ux	Uy	Driftx	Drift y	δ	ΔΕ	hsi	ΔΕ	AM-0 75DAE	Aonrom	Δe/Δep	rom	Deriva ∆M n	náxima
Story		Output Case	Case Type	m	m	m	m	m	m	m	m/m	ANI-0,73NAE	Achiom	≤1,2	?	< 2%	
Story5	13	-Ex2+0,3Ey2	LinStatic	-0.028241	0.012567	-0.003378	0.0015	0.0309	0.0037	3	0.0012	0.0074	0.0013	0.92	OK	0.740%	OK
Story5	16	-Ex2+0,3Ey2	LinStatic	-0.034354	0.012567	-0.004098	0.0015	0.0366	0.0044	3	0.0015	0.0087	0.0013	1.08	OK	0.873%	OK
Story4	13	-Ex2+0,3Ey2	LinStatic	-0.024863	0.011059	-0.005665	0.0025	0.0272	0.0062	3	0.0021	0.0124	0.0023	0.92	OK	1.241%	OK
Story4	16	-Ex2+0,3Ey2	LinStatic	-0.030256	0.011059	-0.006883	0.0025	0.0322	0.0073	3	0.0024	0.0147	0.0023	1.08	OK	1.466%	OK
Story3	13	-Ex2+0,3Ey2	LinStatic	-0.019198	0.008533	-0.007587	0.0034	0.0210	0.0083	3	0.0028	0.0166	0.0030	0.92	OK	1.661%	OK
Story3	16	-Ex2+0,3Ey2	LinStatic	-0.023373	0.008533	-0.00923	0.0034	0.0249	0.0098	3	0.0033	0.0197	0.0030	1.08	OK	1.966%	OK
Story2	13	-Ex2+0,3Ey2	LinStatic	-0.011611	0.005155	-0.007363	0.0033	0.0127	0.0081	3	0.0027	0.0161	0.0029	0.92	OK	1.611%	OK
Story2	16	-Ex2+0,3Ey2	LinStatic	-0.014143	0.005155	-0.008958	0.0033	0.0151	0.0095	3	0.0032	0.0191	0.0029	1.08	OK	1.907%	OK
Story1	13	-Ex2+0,3Ey2	LinStatic	-0.004248	0.001883	-0.004248	0.0019	0.0046	0.0046	3	0.0015	0.0093	0.0017	0.91	OK	0.929%	OK
Story1	16	-Ex2+0,3Ey2	LinStatic	-0.005185	0.001883	-0.005185	0.0019	0.0055	0.0055	3	0.0018	0.0110	0.0017	1.09	OK	1.103%	OK
Base	13	-Ex2+0,3Ey2	LinStatic	0	0	-	-	-	-	-	-	-	-	-	-	-	-
Base	16	-Ex2+0,3Ey2	LinStatic	0	0	-	-	-	-	-	-	-	-	-	-	-	-

5.3. Chequeo de Índice de Estabilidad Qi (NEC-15)

Tabla 37.

Chequeo de Índice de Estabilidad Qi (NEC-15)

TABLE	: Story Forces				TABLE: Story Forces								
Story	Output Case	Case Type	Case Type Location		Story	Story Output Case Case Type Location		VX	VY	Vi			
				tonf	_				tonf	tonf	tonf		
Story5	D+L	LinStatic	Bottom	111.8895	Story5	-Ex2-0,3Ey2	LinStatic	Bottom	24.244	7.2732	25.311479		
Story4	D+L	LinStatic	Bottom	199.9568	Story4	-Ex2-0,3Ey2	LinStatic	Bottom	56.649	16.9947	59.143292		
Story3	D+L	LinStatic	Bottom	199.9567	Story3	-Ex2-0,3Ey2	LinStatic	Bottom	80.505	24.1515	84.049688		
Story2	D+L	LinStatic	Bottom	205.0688	Story2	-Ex2-0,3Ey2	LinStatic	Bottom	96.451	28.9353	100.6978		
Story1	D+L	LinStatic	Bottom	205.0687	Story1	-Ex2-0,3Ey2	LinStatic	Bottom	104.075	31.2225	108.65749		

TABLE: Diaphragm Center Of Mass Displacements														
Story	Diaphragm	Output Case	Case Type	UX	UY	\mathbf{U}	ΔΕ	hsi	ΔΕ	Q= Pi∆i/Vihi	Q<0,1			
				m	m	m	m	m	m/m	Ton-m/Ton-m				
Story5	D5	-Ex2-0,3Ey2	LinStatic	-0.031288	-0.00984	0.0327988	0.003918162	3	0.00130605	0.001924472	OK			
Story4	D4	-Ex2-0,3Ey2	LinStatic	-0.027553	-0.008656	0.0288807	0.006579254	3	0.00219308	0.002471524	OK			
Story3	D3	-Ex2-0,3Ey2	LinStatic	-0.02128	-0.006672	0.0223014	0.008813558	3	0.00293785	0.002329746	OK			
Story2	D2	-Ex2-0,3Ey2	LinStatic	-0.012873	-0.004026	0.0134879	0.008550524	3	0.00285017	0.001934772	OK			
Story1	D1	-Ex2-0,3Ey2	LinStatic	-0.004715	-0.001465	0.0049374	0.004937353	3	0.00164578	0.00103536	OK			

5.4. Chequeo de Derivas de Piso (NSR-10)

Tabla 38.

Derivas de Piso (NSR-10) a partir de las secciones finales obtenidas con NEC-15

<u></u>	Label Output	С	Ux	Uy	Driftx	Drift y	δ	ΔΕ	hsi	ΔΕ	AM_0 70D AE		Δε/Δερ	rom	Deriva	ΔM máxima	
Story		Case	Case Type	m	m	m	m	m	m	m	m/m	ДМ=0,70КДЕ	дергот	≤1,2?		< 1%	
Story5	13	-Ex2+0,3Ey2	LinStatic	-0.039902	0.017616	-0.005666	0.0025	0.0436	0.0062	3	0.0021	0.0101	0.0022	0.92	OK	1.012%	NO CUMPLE
Story5	16	-Ex2+0,3Ey2	LinStatic	-0.048239	0.017616	-0.00682	0.0025	0.0514	0.0073	3	0.0024	0.0119	0.0022	1.08	OK	1.187%	NO CUMPLE
Story4	13	-Ex2+0,3Ey2	LinStatic	-0.034236	0.015109	-0.008439	0.0037	0.0374	0.0092	3	0.0031	0.0151	0.0033	0.92	OK	1.507%	NO CUMPLE
Story4	16	-Ex2+0,3Ey2	LinStatic	-0.041419	0.015109	-0.010184	0.0037	0.0441	0.0108	3	0.0036	0.0177	0.0033	1.08	OK	1.772%	NO CUMPLE
Story3	13	-Ex2+0,3Ey2	LinStatic	-0.025797	0.011378	-0.010389	0.0046	0.0282	0.0114	3	0.0038	0.0185	0.0041	0.92	OK	1.855%	NO CUMPLE
Story3	16	-Ex2+0,3Ey2	LinStatic	-0.031235	0.011378	-0.012561	0.0046	0.0332	0.0134	3	0.0045	0.0218	0.0041	1.08	OK	2.184%	NO CUMPLE
Story2	13	-Ex2+0,3Ey2	LinStatic	-0.015408	0.00679	-0.009898	0.0044	0.0168	0.0108	3	0.0036	0.0177	0.0039	0.92	OK	1.767%	NO CUMPLE
Story2	16	-Ex2+0,3Ey2	LinStatic	-0.018674	0.00679	-0.011979	0.0044	0.0199	0.0127	3	0.0042	0.0208	0.0039	1.08	ОК	2.082%	NO CUMPLE
Story1	13	-Ex2+0,3Ey2	LinStatic	-0.00551	0.002426	-0.00551	0.0024	0.0060	0.0060	3	0.0020	0.0098	0.0022	0.92	ОК	0.983%	OK
Story1	16	-Ex2+0,3Ey2	LinStatic	-0.006695	0.002426	-0.006695	0.0024	0.0071	0.0071	3	0.0024	0.0116	0.0022	1.08	ОК	1.163%	NO CUMPLE
Base	13	-Ex2+0,3Ey2	LinStatic	0	0	-	-	-	-	-	-	-	-	-	-	-	-
Base	16	-Ex2+0,3Ey2	LinStatic	0	0	-	-	-	-	-	-	-	-	-	-	-	-

Las derivas son mayores a Δm máxima, por tanto, se escogen nuevas secciones de vigas y columnas para cumplir con el requisito.

Tabla 39.

Secciones finales de Vigas y Columnas (NSR-10)

Piso	Sección de Columnas (cm)	Sección de Vigas (cm)
5	70X70	30X55
4	75X75	30X55
3	75X75	30X60
2	80X80	30X60
1	80X80	30X60

Se vuelven a chequear las derivas de piso, obteniéndose los siguientes resultados:

Tabla 40.

Chequeo Final de Derivas de piso (NSR-10)

Story	Label	Casa Tuna	Ux	Uy	Driftx	Drift y	δ	ΔΕ	hsi	ΔΕ	AM-0 70D AF	Aonrom	Δe/Δe	prom	Deriva ∆M m	iáxima	
Story	Output Case	Case Type	m	m	m	m	m	m	m	m/m	ANI-0,70KAE	Zeprom	≤1,2?		< 1%		
Story5	13	-Ex2+0,3Ey2	LinStatic	-0.018394	0.007798	-0.003402	0.0014	0.0200	0.0037	3	0.0012	0.0060	0.0013	0.93	OK	0.603%	OK
Story5	16	-Ex2+0,3Ey2	LinStatic	-0.02169	0.007798	-0.003972	0.0014	0.0230	0.0042	3	0.0014	0.0069	0.0013	1.07	OK	0.690%	OK
Story4	13	-Ex2+0,3Ey2	LinStatic	-0.014992	0.006359	-0.004264	0.0018	0.0163	0.0046	3	0.0015	0.0076	0.0017	0.93	OK	0.756%	OK
Story4	16	-Ex2+0,3Ey2	LinStatic	-0.017718	0.006359	-0.005007	0.0018	0.0188	0.0053	3	0.0018	0.0087	0.0017	1.07	OK	0.869%	OK
Story3	13	-Ex2+0,3Ey2	LinStatic	-0.010728	0.004556	-0.004663	0.0020	0.0117	0.0051	3	0.0017	0.0083	0.0018	0.93	ОК	0.827%	OK
Story3	16	-Ex2+0,3Ey2	LinStatic	-0.012711	0.004556	-0.005504	0.0020	0.0135	0.0058	3	0.0019	0.0096	0.0018	1.07	OK	0.955%	OK
Story2	13	-Ex2+0,3Ey2	LinStatic	-0.006065	0.002579	-0.004099	0.0017	0.0066	0.0045	3	0.0015	0.0073	0.0016	0.93	OK	0.727%	OK
Story2	16	-Ex2+0,3Ey2	LinStatic	-0.007207	0.002579	-0.004861	0.0017	0.0077	0.0052	3	0.0017	0.0084	0.0016	1.07	OK	0.843%	OK
Story1	13	-Ex2+0,3Ey2	LinStatic	-0.001966	0.000839	-0.001966	0.0008	0.0021	0.0021	3	0.0007	0.0035	0.0008	0.92	OK	0.349%	OK
Story1	16	-Ex2+0,3Ey2	LinStatic	-0.002346	0.000839	-0.002346	0.0008	0.0025	0.0025	3	0.0008	0.0041	0.0008	1.08	OK	0.407%	OK
Base	13	-Ex2+0,3Ey2	LinStatic	0	0	-	-	-	-	-	-	-	-	-	-	-	-
Base	16	-Ex2+0,3Ey2	LinStatic	0	0	-	-	-	-	-	-	-	-	-	-	-	-

5.5. Chequeo De Índice De Estabilidad Qi (NSR-10)

Tabla 41.

Chequeo de Índice de Estabilidad Qi (NSR-10)

TABLE:	Story Forces				TABLE:	Story Forces					
Story	Output Case	Case Type	Location	Pi	Story	Output Case	Case Type	Location	VX	VY	Vi
				tonf					tonf	tonf	tonf
Story5	D+L	LinStatic	Bottom	156.1167	Story5	-Ex2-0,3Ey2	LinStatic	Bottom	34.481	10.3443	35.999221
Story4	D+L	LinStatic	Bottom	403.6415	Story4	-Ex2-0,3Ey2	LinStatic	Bottom	75.932	22.7796	79.275335
Story3	D+L	LinStatic	Bottom	654.2622	Story3	-Ex2-0,3Ey2	LinStatic	Bottom	107.282	32.1846	112.0057
Story2	D+L	LinStatic	Bottom	913.2926	Story2	-Ex2-0,3Ey2	LinStatic	Bottom	128.797	38.6391	134.46802
Story1	D+L	LinStatic	Bottom	1172.3229	Story1	-Ex2-0,3Ey2	LinStatic	Bottom	139.415	41.8245	145.55353

TABLE: Diaphragm Center Of Mass Displacements											
Story	Diaphragm	Output Case	Case Type	UX	UY	U	ΔΕ	hsi	ΔΕ	Q= Pi∆i/Vihi	Q<0,1
				m	m	m	m	m	m/m	Ton-m/Ton-m	
Story5	D5	-Ex2-0,3Ey2	LinStatic	-0.020033	-0.006323	0.0210072	0.003870177	3	0.00129006	0.001864853	OK
Story4	D4	-Ex2-0,3Ey2	LinStatic	-0.016348	-0.00514	0.017137	0.004861846	3	0.00162062	0.00275053	OK
Story3	D3	-Ex2-0,3Ey2	LinStatic	-0.011714	-0.003669	0.0122752	0.005327252	3	0.00177575	0.003457582	OK
Story2	D2	-Ex2-0,3Ey2	LinStatic	-0.006633	-0.002068	0.0069479	0.004691742	3	0.00156391	0.003540646	OK
Story1	D1	-Ex2-0,3Ey2	LinStatic	-0.002155	-0.000668	0.0022562	0.002256158	3	0.00075205	0.002019071	OK

5.6.Diseño de Elementos con ACI 318-19

5.6.1. Diseño de Viga Criterios ACI 318-19: $Ln \ge 4d;$ $5 \ge 1,8 (NEC)$ "OK" $5 \ge 2,2 (NSR)$ "OK" bw $\ge 0,3h;$ $25 \ge 15 (NEC)$ "OK" $30 \ge 18 (NSR)$ "OK"

Las vigas de 25x50 (NEC) y 30x60 (NSR) cumplen con los criterios citados en la normativa ACI 318-19.

5.6.1.1. Diseño a flexión

A partir del análisis realizado a la estructura mediante el software Etabs 18 v1.1 y considerando las combinaciones de carga utilizadas, se obtuvieron los momentos máximos actuantes en las vigas, mismos que se emplearán para el cálculo del acero longitudinal requerido.

En la figura 20, se presentan los máximos momentos en las vigas tanto para la estructura analizada con la normativa NEC (donde las vigas más críticas se encuentran en el eje 1 piso 2), como para la de la normativa NSR (donde las vigas más críticas se encuentran en el eje 2 piso 3). Así mismo se destaca que los momentos para el caso de las dos estructuras son producto de la combinación de carga 1.2D+L+(-Ex-0.3Ey).

Figura 20.

Máximos Momentos en las vigas de la estructura de (NEC) y (NSR)

Nota. Pórtico Eje 1, izq. (NEC), Pórtico Eje 2, der. (NSR)

Para proceder al cálculo del acero requerido de la viga a flexión, en tabla 42 se presentan los máximos momentos negativos, positivos y en el centro de la viga, considerando todas las combinaciones.

Tabla 42.

Momentos de diseño (Ton.m) para vigas críticas

	Momen	tos de diseí	ňo NEC		Momentos de diseño NSR					
Viga cr	ítica, Pórtico 1	Inicio	Medio	Fin	Viga cri	ítica, Pórtico 2	Inicio	Medio	Fin	
	Superior (+2 Ejes)	10,261	2,7048	10,8191		Superior (+2 Ejes)	8.8665	2.2807	9.1229	
Piso 2,	Combinación	1.2D + L + (-Ex - 0.3Ey)	$\frac{Mn^+_{max}}{4}$	1.2D + L + (Ex + 0.3Ey)	Piso 3,	Combinación	1.2D + L + (-Ex - 0.3Ey)	$\frac{Mn^+_{max}}{4}$	1.2D + L + (Ex + 0.3Ey)	
25x50	Inferior (-2 Ejes)	9,5204	2,7048	10,0531	30x60	Inferior (-2 Ejes)	7.9691	2.2807	8.1137	
	Combinación	0.9D + (Ex + 0.3Ey)	$\frac{Mn^{+}_{max}}{4}$	0.9 <i>D</i> + (- <i>Ex</i> - 0.3 <i>Ey</i>)		Combinación	0.9D + (Ex + 0.3Ey)	$\frac{Mn^{+}_{max}}{4}$	0.9D + (-Ex - 0.3Ey)	

A partir de estos datos se procede a realizar el cálculo respectivo.

$$As = k \left(1 - \sqrt{1 - \frac{2 Mu}{\phi * k * d * fy}} \right)$$

$$k = \frac{0.85 * f'c * b * d}{fy}$$

$$f'c = 240 \text{ kg/cm}^2$$

$$fy= 4200 \text{ kg/cm}^2$$

$$\Phi= 0.9$$

$$k = \frac{0.85 * 240 * 0.25 * 0.46}{4200} = 0.005586 m^2$$

$$As = 0.005586 \left(1 - \sqrt{1 - \frac{2 * 10.8191}{0.9 * 0.005586 * 0.46 * 42000}} \right) = 0.0006614 m^2$$

$$As = 6.614 \ cm^2 \text{ (NEC)}$$

$$k = \frac{0.85 * 240 * 0.30 * 0.56}{4200} = 0.00816 m^2$$

$$As = 0.00816 \left(1 - \sqrt{1 - \frac{2 * 9.1229}{0.9 * 0.00816 * 0.56 * 42000}} \right) = 0.000443 m^2$$

$$As = 4.430 \ cm^2 (\text{NSR})$$

Se realiza la comprobación de que el acero longitudinal en la viga sea mayor que el acero mínimo presentado en capítulos anteriores.

Para NEC:

$$As_{min} = \frac{14}{fy} * b * d$$

$$As_{min} = \frac{14}{4200} * 25 * 46$$

$$As_{min} = \frac{14}{4200} * 25 * 46$$

$$As_{min} = \frac{0.8\sqrt{frc}}{4200} * 25 * 46$$

$$As_{min} = \frac{0.8\sqrt{240}}{4200} * 25 * 46$$

$$As_{min} = 3.83 \text{ cm}^2$$

$$As_{min} = 3.39 \text{ cm}^2$$

Para NSR:

$$As_{min} = \frac{14}{fy} * b * d$$

$$As_{min} = \frac{14}{4200} * 30 * 56$$

$$As_{min} = 5.60 \ cm^{2}$$

$$As_{min} = \frac{14}{4200} * 30 * 56$$

$$As_{min} = 4.957 \ cm^{2}$$

Se escoge el mayor As_{min} y se compara con el As calculado

$$As > As_{min}$$
; 6.614 cm² > 3.83 cm² (NEC) "OK"
 $As > As_{min}$; 4.430 cm² > 5.60 cm² (NSR) "NO CUMPLE"

En el caso de la viga de la normativa (NSR) el acero suministrado es menor que el acero mínimo, por tanto, debe realizarse lo siguiente:

$$As_{req} = \frac{4}{3}cal = \frac{4}{3} * 4.430 = 5.907 \ cm^2 \ \text{``OK''}$$

La cuantía de acero queda determinada por:

$$\rho = \frac{As}{b*d} = \frac{6.614}{25*46} = 0.0058 \text{ (NEC)}$$
$$\rho = \frac{As}{b*d} = \frac{5.907}{30*60} = 0.0032 \text{ (NSR)}$$

Para obtener el acero en las demás secciones de la viga, se escala dividiendo el Momento de diseño en la sección de interés entre el momento máximo (Mu⁻ de la sección derecha). Este factor de escala es multiplicado al As calculado para el Mu⁻, tal como se presenta a continuación:

Para NEC:

 $Mu^{-}(izq.) = 10.261 \text{ Ton.m}$

Factor Escala =
$$\frac{10.261}{10.8191}$$
 = 0.9484
 As_{req} = 0.9484(6.614) = 6.272 cm²

Mu⁻(centro) = 2.7048 Ton.m

Factor Escala =
$$\frac{2.7048}{10.8191}$$
 = 0.25 $As_{req} = 0.25(6.614) = 1.6535 \ cm^2$

En vista de que en el centro de la viga el As<Asmin bastará con multiplicar al As calculado por 4/3.

$$As_{req} = \frac{4}{3}cal = \frac{4}{3} * 1.6535 = 2.205 \ cm^2$$

Para NSR:

Mu⁻(izq.) = 8.8665 Ton.m

Factor Escala =
$$\frac{8.8665}{9.1229} = 0.9719$$
 $As_{req} = 0.9719(5.907) = 5.741 \ cm^2$

Mu⁻(centro) = 2.281 Ton.m

Factor Escala =
$$\frac{2.281}{9.1229} = 0.25$$
 $As_{req} = 0.25(5.907) = 1.476 \ cm^2$

A continuación, se calcula la máxima cuantía permitida en zonas sísmicas, que corresponde a $0.5\rho_{balanceada}$.

$$\rho_{b} = \beta_{1} * 0.85 * \frac{f'c}{fy} * \left(\frac{6000}{6000 + fy}\right) \qquad \rho_{b} = 0.85 * 0.85 * \frac{240}{4200} * \left(\frac{6000}{6000 + 4200}\right) = 0.0243$$

$$\rho_{max} = 0.5\rho_{b} \qquad \rho_{max} = 0.5(0.0243) = 0.0121$$

$$\rho < \rho_{max} \qquad 0.0058 < 0.0121 \quad (NEC) \text{``OK''}$$

$$\rho < \rho_{max} \qquad 0.0032 < 0.0121 \quad (NSR) \text{``OK''}$$

En la tabla 43 se presenta en detalle el acero longitudinal en cm² suministrado en las diferentes secciones de las vigas críticas, así mismo las combinaciones de cargas gravitacionales y sísmicas que produjeron los máximos momentos en estas.

Tabla 43.

Refuerzo longitudinal (cm²) en vigas críticas

			NEC					NSR	
Vigas c	ríticas, Pórtico 1	Inicio	Medio	Fin	Vigas c	ríticas, Pórtico 2	Inicio	Medio	Fin
	Superior (+2 Ejes)	6.272	1.6535	6.614		Superior (+2 Ejes)	5.741	1.476	5.907
Piso 2,	Combinación	1.2D + L + (-Ex - 0.3Ey)	$\frac{Mn^{+}_{max}}{4}$	1.2D + L + (Ex + 0.3Ey)	Piso 3,	Combinación	1.2D + L + (-Ex - 0.3Ey)	$\frac{Mn^{+}_{max}}{4}$	1.2D + L + (Ex + 0.3Ey)
25x50	Inferior (-2 Ejes)	5.820	1.6535	6.145	30x60	Inferior (-2 Ejes)	5.083	1.476	5.175
	Combinación	0.9D + (Ex + 0.3Ey)	$\frac{Mn^{+}_{max}}{4}$	0.9D + (-Ex - 0.3Ey)		Combinación	0.9D + (Ex + 0.3Ey)	$\frac{Mn^{+}_{max}}{4}$	0.9D + (-Ex - 0.3Ey)
	Superior (+2 Ejes)	3.887	1.047	4.187		Superior (+2 Ejes)	3.925	1.006	4.023
Piso 4,	Combinación	1.2D + L + (-Ex - 0.3Ey)	$\frac{Mn^{+}_{max}}{4}$	1.2D + L + (Ex + 0.3Ey)	Piso 4,	Combinación	1.2D + L + (-Ex - 0.3Ey)	$\frac{Mn^{+}_{max}}{4}$	1.2D + L + (Ex + 0.3Ey)
25x45	Inferior (-2 Ejes)	3.385	1.047	3.637	30x55	Inferior (-2 Ejes)	3.380	1.006	3.401
	Combinación	0.9D + (Ex + 0.3Ey)	$\frac{Mn^{+}_{max}}{4}$	0.9D + (-Ex - 0.3Ey)		Combinación	0.9D + (Ex + 0.3Ey)	$\frac{Mn^{+}_{max}}{4}$	0.9D + (-Ex - 0.3Ey)

5.6.1.2.Diseño a cortante

Concluido el diseño a flexión se procede con el diseño del acero que actúa a cortante, en la figura se muestra la carga uniformemente distribuida en la viga producto de la combinación 1.2D+L, así mismo los momentos probables que están en función del acero superior e inferior de la viga.

Figura 21.

Cortante equivalente en vigas

Nota. Sup. Viga 25x50 Piso 2 (NEC), Inf. Viga 30x60 Piso 3 (NSR)

El cálculo del acero en forma de estribos se presenta a continuación: $Mpr = 1.25 \ As * fy * \left(d - \frac{a}{2}\right)$ $a = \frac{As(1.25 \ fy)}{(0.85 \ f'c \ b)}$ $Mpr = 1.25^2 * As * fy * \left(\frac{d}{1.25} - \frac{As \ fy}{2(0.85 \ f'c \ b)}\right)$

Se calculan los momentos probables positivo y negativo respectivamente:

Para NEC:

$$Mpr^{+} = 1.25^{2} * (5 * 1.131) * 4200 * \left(\frac{46}{1.25} - \frac{(5 * 1.131)(4200)}{2(0.85 * 240 * 25)}\right) = 1279269 \ kg.\ cm$$
$$Mpr^{-} = 1.25^{2} * (6.471) * 4200 * \left(\frac{46}{1.25} - \frac{(6.471)(4200)}{2(0.85 * 240 * 25)}\right) = 1449595 \ kg.\ cm$$

Conocidos los valores de los momentos probables, se obtiene el cortante equivalente:

$$Ve = \left(\frac{1279269 + 1449595}{3.5*100}\right) + \left(\frac{10.172*3.5*100}{2}\right) = 9577 \ kg \ (\text{NEC})$$

Debido a que $\frac{\sum Mpr}{Ln} > \frac{Ve}{2}$ conservadoramente $\phi Vc = 0$

$$\phi Vn = \phi Vs$$

En la zona 2H se elige $1\phi 10$ cada 10 cm:

$$\phi Vn = \phi A_{sv} * f_y * \frac{d}{s}$$

$$\phi Vn = 0.75(2 * 0.785)(4200) \left(\frac{46}{10}\right) = 22749.3 \ kg$$

$$\phi Vn > Ve \qquad 22254.75 > 9577 \quad \text{``OK''}$$

Fuera de la zona 2H se elige $1\phi 10 \ cada \ 20 \ cm$:

$$\phi Vn = \phi Vc + \phi Vs$$

$$\phi Vc = \phi * 0.53 * \sqrt{f'c} * b * d$$

$$\phi Vn = 0.75 * 0.53 * \sqrt{240} * 25 * 46 + 0.75(2 * 0.785)(4200) \left(\frac{46}{20}\right) = 16685.96 \ kg$$

Se debe verificar que $\phi Vn > Vu$, donde Vu se obtiene a partir de Etabs.

$$\phi Vn > Vu$$
 16685.96 > 6759.20 "OK"

También debe cumplir acero mínimo de corte y espaciamiento máximo.

$$s < \frac{d}{2}$$
 20 < $\frac{46}{2}$; 20 < 22.5 "OK"
 $Av_{min} > 3.5 \frac{bw}{fyt}s$ $Av_{min} > 3.5 \frac{25}{4200} * 20 = 0.4167 \ cm^2$
 $1\phi 10 \ Av_{provisto} = 1,57 \ cm^2$ $Av_{provisto} > Av_{min}$ 1,57 $cm^2 > 0.4167 \ cm^2$ "OK"

Para NSR:

$$Mpr^{+} = 1.25^{2} * (5 * 1.131) * 4200 * \left(\frac{56}{1.25} - \frac{(5 * 1.131)(4200)}{2(0.85 * 240 * 30)}\right) = 1403656 \ kg. \ cm$$
$$Mpr^{-} = 1.25^{2} * (4.963) * 4200 * \left(\frac{56}{1.25} - \frac{(4.963)(4200)}{2(0.85 * 240 * 30)}\right) = 1590558 \ kg. \ cm$$

Cortante equivalente:

$$Ve = \left(\frac{1403656 + 1590558}{3.25*100}\right) + \left(\frac{20.344*3.25*100}{2}\right) = 8200 \ kg \ (\text{NSR})$$

Debido a que $\frac{\sum Mpr}{Ln} > \frac{Ve}{2}$ conservadoramente $\phi Vc = 0$

$$\phi Vn = \phi Vs$$

En la zona 2H se elige $1\phi 10 \ cada \ 10 \ cm$:

$$\phi Vn = \phi A_{sv} * f_y * \frac{d}{s}$$

$$\phi Vn = 0.75(2 * 0.785)(4200) \left(\frac{56}{10}\right) = 27694.8 \ kg$$

$$\phi Vn > Ve \qquad 27694.8 > 8200 \quad \text{``OK''}$$

Fuera de la zona 2H se elige $1\phi 10$ cada 25 cm:

$$\phi Vn = \phi Vc + \phi Vs$$

$$\phi Vc = \phi * 0.53 * \sqrt{f'c} * b * d$$

$$\phi Vn = 0.75 * 0.53 * \sqrt{240} * 30 * 56 + 0.75(2 * 0.785)(4200)\left(\frac{56}{25}\right) = 18837.1 \ kg$$

So dobe verificer que $\phi Vn > Va$, donde Vu se obtiene e pertir de Etabe

Se debe verificar que $\phi Vn > Vu$, donde Vu se obtiene a partir de Etabs.

$$\phi Vn > Vu$$
 18837.1 > 6688.8 "OK"

También debe cumplir acero mínimo de corte y espaciamiento máximo.

$$s < \frac{d}{2}$$
 $25 < \frac{56}{2};$ $25 < 28$ "OK"

$$Av_{min} > 3.5 \frac{bw}{fyt}s$$
 $Av_{min} > 3.5 \frac{30}{4200} * 25 = 0.625 \ cm^2$

 $1\phi 10 Av_{provisto} = 1,57 \text{ cm}^2$ $Av_{provisto} > Av_{min}$ $1,57 \text{ cm}^2 > 0.625 \text{ cm}^2$ "OK"

En la figura 22 se presenta a detalle el refuerzo longitudinal y transversal suministrado en las vigas analizadas, así mismo, cortes transversales de la viga, tanto en los extremos como en el centro.

Figura 22.

Detalle de refuerzo longitudinal y transversal en vigas analizadas.

Nota. Sup. Viga 25x50 Piso 2 (NEC), Inf. Viga 30x60 Piso 3 (NSR)

5.6.2. Diseño de Columna

Criterios ACI 318-19:

hc1, hc2 \geq 30 cm;

 $50 \text{ cm} \ge 30 \text{ cm} (\text{NEC})$ "OK"

 $80 \text{ cm} \ge 30 \text{ cm} (\text{NSR})$ "OK"

 $\frac{Dimensión menor}{Dimensión mayor} > 0.4$ $\frac{50}{50} > 0.4 \text{ (NEC)} \quad \text{``OK''}$ $\frac{80}{80} > 0.4 \text{ (NSR)} \quad \text{``OK''}$

5.6.2.1. Diseño a flexo-compresión

Para el diseño a flexo-compresión se construyen diagramas de interacción con las diferentes consideraciones de las columnas más críticas. En la figura 23 se presentan los momentos de diseño producto de las combinaciones de cargas más críticas, en este caso 1.2D+L+(Ex+0.3Ey) para las columnas de la estructura de (NEC), y 1.2D+L+(-Ex-0.3Ey) para la de (NSR).

Figura 23.

Momentos de diseño para columnas a flexo-compresión

Nota. Pórtico Eje 1, izq. (NEC), Pórtico Eje 1, der. (NSR)

A continuación, se presentan los diagramas de interacción para las columnas de los pisos 1 y 2, tanto de NEC como de NSR, así mismo se detallan a partir de las tablas los puntos de Carga Axial y Momento considerados para formar las gráficas.

Figura 24.

Diagrama de Interacción Columna 50x50 NEC

Tabla 44.

Valores de Carga Axial y Momento considerados en el Diagrama de Interacción NEC

	MU	Pu	phi	Mn	Pn
Tensión Pura	0	-135.11	0.9	0	-121.60
Flexión Pura	27.56	0	0.9	24.81	0
Tensión controlada	43.26	111.09	0.9	38.94	99.98
Falla Balanceada	49.54	234.28	0.65	32.20	152.28
Compresión Pura	0	638.55	0.65	0	415.06
0,8Po			0.65	0	332.05

Figura 25.

Diagrama de Interacción Columna 80x80 NSR

Tabla 45.

	Mu	Pu	Φ	Mn	Pn
Tensión Pura	0	-291.60	0.9	0	-262.44
Flexión Pura	101.49	0	0.9	91.34	0
Tensión controlada	181.26	339.02	0.9	163.14	305.12
Falla Balanceada	202.23	631.80	0.65	131.45	410.67
Compresión Pura	0	1583.04	0.65	0	1028.98
0,8Po				0	823.18

Valores de Carga Axial y Momento considerados en el Diagrama de Interacción NSR

Finalmente, en la figura 26 se muestra las secciones de las columnas y el detalle del acero longitudinal suministrado.

Figura 26.

Detalle del acero en las columnas analizadas

Nota 1. Sup. Columnas (NEC), cuantía de acero: 1.29, 1.21, 1.38 respectivamente.

Nota 2. Inf. Columnas (NSR), cuantía de acero: 1.08, 1.09, 1.14 respectivamente.

5.6.2.2. Diseño a cortante

Considerando el detalle de las columnas mostradas en la figura 46 se procede a calcular el acero de corte en forma de estribos.

Datos preliminares:

Para NEC:

rec = 4 cmmenor $\phi_{db} = 1.6 cm$

 $\phi_{sh} = 1 \ cm$

Se determina el Valor de Lo

$$Lo = hc = 50 \ cm$$

 $Lo = \frac{Ln}{6} = \frac{300 - 50}{6} = 41.7 \ cm$
 $Lo = 45 \ cm$

Controla Lo= 50 cm, sin embargo, para columnas de planta baja es conservador considerar un 50% de la altura de las columnas, debido a las grandes demandas de carga axial que allí se producen.

$$Lo = 50 + 0.5(50) = 75 \ cm$$

Separación de los estribos en zona Lo

$$So = \frac{hc}{4} = \frac{50}{4} = 12.5 \ cm$$

$$So = 6db = 6(1.6) = 9.6 \ cm$$

$$So = 100 + \left(\frac{350 - hx}{3}\right) = 10 + \left(\frac{35 - 19.2}{3}\right) = 15.27 \ cm$$

Controla So= 12.5 cm sin embargo por facilidad constructiva se escoge So=10 cm.

Diseño por confinamiento:

$$b_{c} = 50 - 2(4) = 42 \ cm$$

$$A_{ch} = 42 * 42 = 1764 \ cm^{2}$$

$$A_{sh \ provisto} = 4(0.785) = 3.14 \ cm^{2}$$

$$A_{g} = 50 * 50 = 2500 \ cm^{2}$$

$$\frac{A_{sh}}{s \ b_{c}} = 0.3 \left(\frac{A_{g}}{A_{ch}} - 1\right) \left(\frac{f'c}{f_{yt}}\right) = 0.3 \left(\frac{2500}{1764} - 1\right) \left(\frac{f'c}{f_{yt}}\right) \qquad \qquad \frac{A_{sh}}{s \ b_{c}} = 0.09 \left(\frac{f'c}{f_{yt}}\right)$$

$$0.1438 \left(\frac{f'c}{f_{yt}}\right) > 0.09 \left(\frac{f'c}{f_{yt}}\right)$$

$$A_{sh} = 0.1438 \left(\frac{240}{4200}\right) (10) (42) = 3.04 \ cm2$$

$$A_{sh \ provisto} > A_{sh} \qquad 3.14 \ cm^2 > 3.04 \ cm2 \qquad \text{``OK''}$$

En zona Lo, 2 estribos $\Phi 10$ cada 10 cm cumplen adecuadamente.

Separación de estribos fuera de la zona Lo

$$So = 15 cm$$

$$So = 6db = 6(1.6) = 9.6 \ cm$$

Controla So = 9.6 cm, pero como no es recomendable tener estribos a menos de 10cm, se opta por elegir So = 10cm.

Para NSR:

rec = 4 cm

menor $\phi_{db} = 1.8 \ cm$

$$\phi_{sh} = 1 \ cm$$
 ; 1.2 cm

Se determina el Valor de Lo

$$Lo = hc = 1.5(80) = 120 \ cm$$

$$Lo = \frac{Ln}{6} = \frac{300 - 60}{6} = 40 \ cm$$

 $Lo = 45 \ cm$

Separación de los estribos en zona Lo

$$So = \frac{hc}{4} = \frac{80}{4} = 20 \ cm$$

$$So = 6db = 6(1.8) = 10.8 \ cm$$

$$So = 100 + \left(\frac{350 - hx}{3}\right) = 10 + \left(\frac{35 - 33.8}{3}\right) = 10.4 \ \cong 10 \ cm$$
 "Controla"

Diseño por confinamiento:

$$b_{c} = 80 - 2(4) = 72 \ cm$$

$$A_{ch} = 72 * 72 = 5184 \ cm^{2}$$

$$A_{sh \ provisto} = 2(1.131 + 0.785) = 3.83 \ cm^{2}$$

$$A_{g} = 80 * 80 = 6400 \ cm^{2}$$

$$\frac{A_{sh}}{s \ b_{c}} = 0.3 \left(\frac{A_{g}}{A_{ch}} - 1\right) \left(\frac{f'c}{f_{yt}}\right) = 0.3 \left(\frac{6400}{5184} - 1\right) \left(\frac{f'c}{f_{yt}}\right)$$

$$\frac{A_{sh}}{s \ b_{c}} = 0.09 \left(\frac{f'c}{f_{yt}}\right)$$

$$0.09 \left(\frac{f'c}{f_{yt}}\right) > 0.0704 \left(\frac{f'c}{f_{yt}}\right)$$

$$A_{sh} = 0.09 \left(\frac{240}{4200}\right) (10)(72) = 3.70 \ cm^{2}$$

$$A_{sh \ provisto} > A_{sh}$$

$$3.83 \ cm^{2} > 3.70 \ cm^{2}$$
"OK"

En zona Lo, 2 estribos (Φ 12+ Φ 10) cada 10 cm cumplen adecuadamente.

Separación de estribos fuera de la zona Lo

$$So = 15 \ cm$$

 $So = 6db = 6(1.8) = 10.8 \cong 10 \ cm$ "Controla"

En la figura se presenta el detalle del acero transversal en forma de estribos provisto para las columnas.

Figura 27.

Detalle del acero transversal en las columnas

Nota. Izq (NEC), der. (NSR).

<u>\$\$20</u>

<u>\ Φ12</u>

<u>Φ10</u>

Φ10

<u>Φ18</u>

Conclusiones

Al obtener los espectros de diseño elásticos en aceleraciones y posteriormente los inelásticos producto de emplear valores de R=8 para NEC-15 y R=7 para NSR-10 se puede verificar que la diferencia entre los espectros inelásticos no es tan significativa, es así que en la meseta del espectro de NEC se obtiene un valor Sa(g)= 0.133, mientras que en la meseta del espectro de NSR-10 Sa(g)= 0.131, existiendo una diferencia de apenas el 1.14%. Por otro lado, en la parte curva del espectro, las coordenadas de Sa(g) de NEC son menores que las de NSR-10 en un 7,27%. Por último, el coeficiente sísmico (Cs=Sa(Ta)I/R) de NEC es ligeramente inferior que el de NSR en apenas un 2,34%. Con estos criterios se llega a la conclusión de que los espectros son coincidentes.

Para establecer las diferencias entre ambas normativas se presenta una tabla comparativa, en donde son definidas algunas de las especificaciones consideradas en el análisis sísmico.

Tabla 46.

Diferencias en	el Análisis sís	mico de normativ	as NEC-15 v NSR-10
2 90.00000000000000000000000000000000000	er i i.rentoto 515		

	NEC-15	NSR-10	
Zonas de amenaza sísmica	Mapa Zonificación sísmica, 6 zonas, 3 niveles de peligro sísmico.	Mapa Zonificación sísmica, 10 regiones, 3 niveles de peligro sísmico.	
Coeficiente de aceleración	Z, define la zona de peligro sísmico.	Aa y Av, el mayor de los dos define el número de la región.	
Tipos de Perfiles de Suelo	6 clases de suelos, clasificados a partir de Vs, N, Su.	6 clases de suelos, clasificados a partir de Vs, N, Su.	
Coeficiente de Sitio	Fa, Fd, Fs	Fa, Fv	
Aceleración	Meseta: Sa(g)= η .z.Fa	Meseta: Sa(g)= 2.5 Aa. Fa. I	
Espectral	Zona Curva: $Sa(g) = \eta z Fa\left(\frac{Tc}{T}\right)^r$	Zona Curva: $Sa(g) = 1.2 \frac{Av.Fv.I}{T}$	
Período Aproximado	$T_a = C^t h_n^{\ \alpha} = 0.629$ $C_t = 0.055$	$T_a = C^t h_n^{\ \alpha} = 0.538$ $C_t = 0.047$	
Coeficiente R	Pórtico Especial S.M. R=8	Pórtico DES R=7	
Cortante Basal	$V = \frac{ISa(Ta)}{R\phi_p\phi_E}W$	$Vs = \frac{Sa \ g \ M}{R_o \phi_p \phi_a \phi_r}$	
Deriva Inelástica y	$\Delta M = 0.75 \ R \ \Delta E$	$\Delta M = 0.70 \ R \ \Delta E$	
limites	$\Delta M_{max} = 0.02 hpi$	$\Delta M_{max} = 0.01 hpi$	

Se puede evidenciar que el valor del periodo aproximado en NEC-15 es superior en un 17% con respecto al de NSR-10, esto se debe a los distintos valores que las normativas presentan para el Coeficiente Ct. Tener un periodo de vibración más pequeño conlleva a una aceleración espectral mayor y por ende un cortante basal superior, es así que para la normativa ecuatoriana se obtiene un Vx=104.1 Ton y para la normativa colombiana un Vx=139.4 Ton, confirmando así lo antes expuesto.

El criterio que sin duda alguna define las dimensiones de los elementos como las vigas y las columnas son las derivas, debido a que en la norma NEC-15 el límite de ΔM_{max} es el doble del que se presenta en NSR-10.

Considerando que en la normativa colombiana el área de las columnas es 2.6 veces mayor que la obtenida con la norma ecuatoriana, y así mismo el área de las vigas 1.5 veces mayor, se concluye que las estructuras de NSR-10 son más rígidas que las de NEC-15, por tanto, se espera que presenten un mejor desempeño sísmico.

Recomendaciones

La normativa NEC-SE-DS podría incluir en futuras actualizaciones criterios como el coeficiente de redundancia para estructuras que presenten una irregularidad de este tipo, así mismo el límite de la deriva máxima debe revisarse considerando de que comparándola con países vecinos es permisible, como ya se evidenció con Colombia, e inclusive Perú donde la deriva máxima llega a estar en el orden del 0.7%.

Si bien es cierto se estableció la sección de columna más crítica para todas las demás que conforman un piso i, se recomienda que se las prediseñe individualmente, ya que al trabajar con un solo tipo de columnas y con derivas tan bajas como las de NSR-10, podríamos tener columnas muy sobredimensionadas y con una eficiencia (obtenida en los diagramas de interacción) tan baja, incluso por debajo de 0.20.

Se recomienda que tanto NEC-15 en su sección de hormigón armado, y NSR-10 en su Título B de concreto estructural sean actualizados debido a que recientemente se actualizó el código ACI, a la versión ACI 318-19, con algunas consideraciones para el diseño, que evidentemente no se encuentran en los códigos antes mencionados.

Bibliografía

DONOBHAN PRESICHI, G. (2007). Aplicación de los métodos estático y dinámico modal para el diseño sismico de edificios con disipadores de energía. México.

José, A., & Rocha, A. (Septiembre de 2009). PREDIMENSIONADO DE COLUMNAS DE CONCRETO ARMADO, EN EDIFICIOSAPORTICADOS SOMETIDOS A ACCIONES SISMICAS, BAJO CONDICIONES DEDUCTILIDAD. Carabobo, Venezuela.

Marcelo Romo, P. (2008). TEMAS DE CONCRETO ARMADO.

Montero López, V. (Febrero de 2004). *Colección de Tesis Digitales*. Obtenido de http://catarina.udlap.mx/u_dl_a/tales/documentos/lic/montero_l_v/capitulo5.pdf

NEC-SE-DS. (2015). NEC-SE-DS Peligro Sísmico. Quito.

NSR-10. (2010). Reglamento colombiano de construcción sismoresistente.

ABAD, J. C. and D. R. G. TORRES (2015). "ESTUDIO DE LOS COEFICIENTES DE REDUCCIÓN DE RESPUESTA ESTRUCTURAL—RI DE LA NORMA ECUATORIANA DE LA CONSTRUCCIÓN." <u>El factor de redundancia</u>: 51-56.

Andrade Insúa, L. E. (2004). "Control de la deriva en las normas de diseño sismorresistente."

Cruz Barreto, I. A. and V. S. Dieguez Mendoza (2016). "Analisis y Diseño Estructural en concreto armado para una vivienda multifamiliar aplicando la nueva norma de diseño sismorresistente en la urbanizacion soliluz-Trujillo."

Lafuente, M., et al. (2014). Revisión de la normativa sísmica en América Latina, CAF.

Lanza, F. J., et al. (2003). "Estudio comparativo de la norma sismorresistente venezolana actual con códigos sísmicos de otros países." <u>Revista INGENIERÍA UC</u> **10**(3): 59-66.

Marte Jiménez, C. J. (2014). Calibración de umbrales de daño sismico para el análisis de fragilidad sísmica de estructuras de hormigón armado mediante análisis estático no lineal (" Push-Over"), Universitat Politècnica de Catalunya.

NEC-SE-HM, M. (2015). "Norma Ecuatoriana de la Construcción, Estructuras de hormigón armado." Quito: Camara de la Industria y la Costrucción.

NEC (2015). NEC-SE-DS Diseño Sismo Resistente, MIDUVI Quito.

NSR-10 (2010). "NSR-10."

Quinde Martínez, P. and E. Reinoso Angulo (2016). "Estudio de peligro sísmico de Ecuador y propuesta de espectros de diseño para la Ciudad de Cuenca." <u>Ingeniería sísmica(94)</u>: 1-26.

Quispe, R., et al. (2003). "Geometría de la Placa de Nazca en el borde occidental de Sudamérica partir de las tendencias medias de sismicidad."

Reyes, L. E. G. (1998). <u>Dinámica estructural aplicada al diseño sísmico</u>, Universidad de loa Andes, Facultad de Ingeniería, Departamento de Ingeniería

Risk, E. C. o. S. (1984). "Glossary of terms for probabilistic seismic-risk and hazard analysis." Earthquake spectra 1(1): 33-40.

Salcedo-Hurtado, E. D. J. and J. L. Pérez (2016). "Caracterización sismotectónica de la región del Valle del Cauca y zonas aledañas a partir de mecanismos focales de terremotos." <u>Boletín de geología</u> **38**(3): 89-107.

Comité ACI 318. (2019). Requisitos del Código de Construcción para Concreto Estructural (ACI 318M-19) y Comentario sobre los Requisitos del Código de Construcción para Concreto Estructural (ACI 318R-19). Instituto Americano del Concreto, Farmington Hill, MI, 628.

Anexos

Anexo 1. Refuerzo longitudinal y transversal en pórticos de la estructura con Normativa NEC-15

Figura 28.

Detalle del refuerzo longitudinal y transversal en pórticos, (NSR)

Pisos 1 - 3

Pisos 4 - 5

1

<u>Φ10</u> <u>Φ12</u>

0.25

<u>Φ10</u>

Anexo 2. Refuerzo longitudinal y transversal en pórticos de la estructura con Normativa NSR-10

Figura 29.

Detalle del refuerzo longitudinal y transversal en pórticos. (NSR)

Para NEC:

Se verifica el cortante en el nudo para una conexión de pórtico interior del piso 2, donde llegan vigas (25x50) a las cuatro caras de la columna (50x50), misma que se presenta en la figura 28.

Figura 30.

Detalle de la conexión viga- columna NEC

Ancho efectivo:

bj = b + h bj = 25 + 50 = 75 cm bj = b + 2x Aj = bj * h bj = 25 + 2(12.5) = 50 cm "Controla" $Aj = 50 * 50 = 2500 cm^2$

La columna continua por encima del nudo una longitud mayor que hc, y el refuerzo debajo del nudo continua por la extensión. **Cumple 15.2.6**

La viga continua más allá del nudo una longitud mayor que su altura, y el refuerzo en la cara opuesta del nudo continua por la extensión. **Cumple 15.2.7**

$$\frac{b_{viga}}{b_{col}} \ge 0.75 \qquad \frac{25}{50} \ge 0.75 \qquad \text{No Cumple con 15.2.8}$$

$$V_{ej} = 1.25(As^{-} + As^{+})fy$$

$$V_{ej} = 1.25(5.655 + 5.655)(4.2) = 59.38 Ton$$

$$\phi V_n = \phi 1.3\lambda \sqrt{f'c} Aj \ [Mpa] = \phi 4.0\lambda \sqrt{f'c} Aj \ \left[\frac{Kg}{cm^2}\right]$$

$$\phi V_n = 0.75(4.0)\sqrt{240} \ (2500) = 116189.5 \ Kg = 116.19 \ Ton$$

 $\phi V_n \ge V_{ej}$ 116.19 \ge 59.38 "**OK**"

Para NEC:

Se verifica el cortante en el nudo para una conexión de pórtico interior del piso 3, donde llegan vigas (30x60) a las cuatro caras de la columna (75x75), misma que se presenta en la figura 29.

Figura 31.

Detalle de la conexión viga- columna NSR

Ancho efectivo:

bj = b + hc	$bj = 30 + 75 = 105 \ cm$	
bj = b + 2x	$bj = 30 + 2(22.5) = 75 \ cm$	"Controla"
Aj = bj * h	$Aj = 75 * 75 = 5625 \ cm^2$	

Cumple 15.2.6

Cumple 15.2.7

$$\frac{b_{viga}}{b_{col}} \ge 0.75 \qquad \frac{30}{75} \ge 0.75 \qquad \text{No Cumple con 15.2.8}$$

$$V_{ej} = 1.25(As^{-} + As^{+})fy$$

$$V_{ej} = 1.25(5.655 + 4.963)(4.2) = 55.75 Ton$$

$$\phi V_n = \phi 4.0\lambda \sqrt{f'c} Aj \left[\frac{Kg}{cm^2}\right]$$

$$\phi V_n = 0.75(4.0)\sqrt{240} (5625) = 261426.4 Kg = 261.43 Ton$$

$$\phi V_n \ge V_{ej} \qquad 261.43 \ge 55.75 \quad \text{``OK''}$$

Anexo 4. Columna Fuerte – Viga Débil

Para NEC:

Se chequea una conexión de pórtico interior del piso 2. A continuación, se calculan los momentos nominales en las vigas producto del acero longitudinal.

$$M_{nb}^- = 0.9(5 * 1.131)(4.2)(0.437) = 9.335 Ton. m$$

$$M_{nb}^{+} = 0.9(5 * 1.131)(4.2)(0.437) = 9.335 Ton. m$$

Los momentos en las columnas son obtenidos a partir de los diagramas de interacción. En la tabla 44 para columnas de 50x50 se aprecia que para carga axial Pn= 0, se obtiene un momento nominal Mn= 24. 81Ton.m, por tanto:

$$\sum Mnc \geq \frac{6}{5} \sum Mnb$$

$$2(24.81) \ge \frac{6}{5}(9.335 + 9.335)$$

 $49.62 \ge 22.40$ "OK" Columna fuerte – Viga débil.

Para NSR:

Se chequea una conexión de pórtico interior del piso 3. A continuación, se calculan los momentos nominales en las vigas producto del acero longitudinal.

$$M_{nb}^- = 0.9(5 * 1.131)(4.2)(0.541) = 11.564$$
 Ton. m

$$M_{nb}^{+} = 0.9(3 * 1.131 + 2 * 0.785)(4.2)(0.543) = 10.187$$
 Ton. m

En la tabla 45 para columnas de 75x75 se aprecia que para carga axial Pn= 0, se obtiene un momento nominal Mn= 74.67 Ton.m, por tanto:

$$\sum Mnc \ge \frac{6}{5} \sum Mnb$$

2(74.67) $\ge \frac{6}{5} (11.564 + 10.187)$

 $149.34 \ge 27.751$ "OK" Columna fuerte – Viga débil.