UNIVERSIDAD ESTATAL “PENÍNSULA DE SANTA ELENA”

FACULTAD DE CIENCIAS DEL MAR

CARRERA DE BIOLOGÍA MARINA

TITULO DEL TRABAJO PRÁCTICO

“REVISIÓN SISTEMÁTICA DE LA INFORMACIÓN EXISTENTE SOBRE LAS METODOLOGÍAS APLICADAS EN EL ESTUDIO DE MICROPLÁSTICOS EN LOS ECOSISTEMAS COSTEROS DE CINCO PAÍSES IDENTIFICADOS EN LATINOAMÉRICA, EUROPA Y ASIA”

TRABAJO PRÁCTICO
Previo a la obtención del Título de:
BIÓLOGO MARINO

AUTOR
Jeniffer Marisela Curillo Garcia

TUTOR
Blga. María Herminia Cornejo Rodríguez Ph.D.

LA LIBERTAD - ECUADOR

2021
TRIBUNAL DE GRADO

Blga. Mayra Cuenca Zambrano, Mgt
Decana
Facultad Ciencias del Mar

Ing. Jimmy Villón Moreno, Msc.
Director
Carrera de Biología Marina

Blga. Janeth Galarza Tipán, Ph.D.
Docente de Área

Blga. JMaría Herminia Cornejo, Ph.D.
Docente de Área
AGRADECIMIENTOS

A mis padres, familia y mejores amigos por haber sido el pilar fundamental que me permítio cumplir esta meta, qué aun en los momentos más difíciles siempre estuvieron prestos ayudarme.

A la Blga. María Herminia Cornejo, tutora de esta tesina, por su guía y enseñanzas profesionales y de vida, que me permitieron finalizar este trabajo de grado.

A los directivos y docentes de la carrera de Biología Marina, que contribuyeron a formarme académicamente con sus enseñanzas y experiencia profesional.
INDICE

RESUMEN ... 1
ABSTRACT .. 2
1. INTRODUCCIÓN ... 3
2. JUSTIFICACIÓN .. 5
3. OBJETIVOS .. 6
 3.1. Objetivo general ... 6
 3.2. Objetivos específicos ... 6
4. MARCO TEORICO ... 7
 4.1. Contaminación marina por plástico .. 7
 4.1.1. Clasificación del plástico localizado en ambientes marinos 8
 4.2. Microplásticos en el ambiente marino-costero ... 9
 4.2.1. Origen de los microplásticos ... 10
 4.2.2. Efectos ambientales de los microplásticos en zonas costeras 12
 4.2.3. Consecuencias sociales de los microplásticos 14
5. METODOLOGIA .. 15
 5.1. Compilación la información ... 15
 5.2. Evaluación de las variables metodológicas empleadas en el estudio de microplásticos en zonas costeras ... 16
 5.3. Análisis de las metodologías estandarizadas más actuales, utilizadas en el estudio de microplásticos ... 16
6. ANÁLISIS E INTERPRETACIÓN DE RESULTADOS ... 17
 6.1. Compilación la información ... 17
 6.1.1. Inglaterra ... 17
 6.1.2. China ... 17
 6.1.3. Brasil ... 18
 6.1.4. México ... 19
 6.1.5. Ecuador .. 19
 6.2. Variaciones metodológicas empleadas en el estudio de microplásticos 20
 6.2.1. Tipos de muestreos y ecosistemas muestreados 20
 6.2.2. Origen de las publicaciones ... 22
 6.3. Metodologías estandarizadas más actuales, utilizadas en el estudio de microplásticos ... 23
6.3.1. Inglaterra ... 24
6.3.2. China... 27
6.3.3. Brasil .. 28
6.3.4. México ... 29
6.3.5. Ecuador .. 30
7. CONCLUSIONES ... 32
8. BIBLIOGRAFIA ... 33
9. ANEXOS .. 54
INDICE DE FIGURAS

Figura 1. Distribución de investigaciones de microplásticos en Inglaterra (Fuente: La autora)... 17
Figura 2. Distribución de investigaciones de microplásticos en China (Fuente: La autora)... 18
Figura 3. Distribución de investigaciones de microplásticos en Brasil (Fuente: La autora)... 18
Figura 4. Distribución de investigaciones de microplásticos en México (Fuente: La autora)... 19
Figura 5. Distribución de investigaciones de microplásticos en Ecuador (Fuente: La autora)... 19
Figura 6. Enfoque de las investigaciones de microplásticos en los diferentes ambientes costeros (Fuente: La autora)... 22
Figura 7. Porcentaje de contribución al estudio de microplásticos en ecosistemas costeros de cada país seleccionado en este estudio (Fuente: La Autora). 23

INDICE DE TABLAS

Tabla 1, Variables aplicadas en las metodologías de extracción de muestras de microplásticos en los cinco países analizados.. 23
Tabla 2, Todos los autores según el enfoque de investigación de los cinco países analizados.. 54

INDICE DE IMÁGENES

Imagen 1. Investigaciones más relevantes sobre microplásticos en ecosistemas costeros de Asia... 55
Imagen 2. Investigaciones más relevantes de microplásticos en zonas costeras de Europa.. 56
Imagen 3. Investigaciones más relevantes sobre microplásticos en zonas costeras de Latinoamérica... 57
RESUMEN

Los estudios sobre microplásticos son cada vez más abundantes; esta problemática mantiene un creciente desarrollo de investigación, que, en ocasiones suele presentar resultados discordantes, lo cual limita considerablemente la posibilidad del acceso a información reciente, generando inconvenientes en los científicos dedicados a esta área. Con la finalidad de brindar una síntesis exhaustiva de este tema, se propone analizar la información existente sobre las metodologías aplicadas en el estudio de microplásticos en ecosistemas costeros de cinco países escogidos entre Latinoamérica, Europa y Asia, en base a los procesos que estos llevan a cabo. Se realizó una revisión sistemática exhaustiva de las investigaciones en diferentes bases de datos, para su síntesis, utilizando palabras claves de búsqueda. Se seleccionó a Inglaterra, China, Brasil y México por ser los países con mayor data disponible sobre microplásticos. Se adicionó al Ecuador para contrastar con la información nacional. Los resultados indican que, de un total de 82 estudios científicos publicados entre los 5 países, China contribuye con el 60,98%, seguido por Brasil con el 18,29%, México con el 10,98%, Inglaterra con el 6%, y Ecuador con el 2,44%. Siendo China informador importante sobre microplásticos en ecosistemas costeros, aunque también es el productor principal de plásticos en el mundo. Las investigaciones, se centraron principalmente en muestreos en zonas de playas y/o estuarinas, seguido de los muestreos en la columna de agua y en menor medida se observaron los análisis de microplásticos en la biota. Las actuales metodologías son replicables, brindando una gran oportunidad de conocimientos para Ecuador, debido a que las investigaciones son escasas y destinadas solo al análisis de microplástico en relación a la biodiversidad.

Palabras clave: Microplástico, ecosistemas, costero, sistemática, metodologías.
ABSTRACT

Studies on microplastics are more and more abundant; this problem maintains a growing development of research, which, on occasions, tends to present discordant results, which considerably limits the possibility of accessing recent information, generating inconveniences for scientists dedicated to this area. In order to provide an exhaustive synthesis of this topic, it is proposed to analyze the existing information on the methodologies applied in the study of microplastics in coastal ecosystems of five countries chosen from Latin America, Europe and Asia, based on the processes carry out. An exhaustive systematic review of the investigations in different databases was carried out for their synthesis, using search keywords. England, China, Brazil, and Mexico were selected as the countries with the largest available data on microplastics. Ecuador was added to contrast with national information. The results indicate that, of a total of 82 scientific studies published among the 5 countries, China contributed 60.98%, followed by Brazil with 18.29%, Mexico with 10.98%, England with 6%, and Ecuador with 2.44%. China is an important informer on microplastics in coastal ecosystems, although it is also the main producer of plastics in the world. The investigations focused mainly on sampling in beach and / or estuarine areas, followed by samplings in the water column and to a lesser extent microplastic analyzes were observed in the biota. The current methodologies are replicable, providing a great knowledge opportunity for Ecuador, due to the fact that the investigations are scarce and destined only to the analysis of microplastic in relation to biodiversity.

Keywords: Microplastic, ecosystems, coastal, systematic, methodologies.
1. INTRODUCCIÓN

Los primeros indicios de la existencia de basura plástica en los océanos datan de los principios de la década de los 70’s (Carpenter et al., 1972; Carpenter & Smith, 1972). Sin embargo, Thompson et al. (2004) comentan que estos microplásticos corresponden a una forma de basura artificial acumulada en los océanos desde la década de los 60’s; investigaciones que no obtuvieron atención por parte de la comunidad científica en esa época. No obstante, en las décadas siguientes, con la acumulación de datos sobre las consecuencias ecológicas de estos residuos, la problemática recibió un interés de investigación cada vez mayor y sostenido (Andrady, 2011).

A partir de estas evidencias, los estudios sobre los efectos del plástico en los océanos conllevó a los primeros hallazgos significativos de fragmentos de desechos plásticos, menores a 0,5 mm en 2009, aunque Qin et al. (2020) mencionan que la presencia de los microplásticos se comenzó a evidenciar en 2004, encontrándose en los océanos de todo el mundo, incluso en zonas alejadas y despobladas como la Antártida (Barnes et al., 2009; Zarfl & Matthies, 2010). Gregory & Andrady (2003) agregan que estos últimos son aquellos que pasan a través de un tamiz de 500 µm pero que son retenidas por un tamiz de 60 µm, fracción que dentro de la composición de aguas superficiales o de arena de playa, incluye gránulos de resina y pintura, así como también compuestos y fragmentos derivados de los desechos plásticos más grandes (Moore, 2008).

Como se mencionó, los estudios e información sobre microplásticos cada vez son más abundantes, desde las primeras evidencias de hace aproximadamente 17 años (Qin et al., 2020), hasta los estudios más actuales (Gaibor et al., 2021; Geng et al., 2021; Li et al., 2021; Tan-Suet et al., 2021; Unsworth et al., 2021); por lo cual, esta enorme y creciente cantidad de información existente sobre la problemática, incrementa ampliamente la posibilidad de que los científicos, dedicados a su estudio, se mantengan actualizados con la información más reciente. Aunque, este “exceso de investigaciones” en muchos
casos presentan resultados discordantes, por carecer de una metodología única, lo que genera como consecuencia, la pérdida del tiempo que un investigador posee para adquirir los nuevos conocimientos, como en su tiempo mencionaron Letelier et al. (2005) y Molina-Arias (2018). Por otro lado, cabe indicar que hay información de divulgación, que, si bien no lleva un proceso sistemático, es de alta relevancia, dado que advierte al público “no científico” sobre la necesidad de mejorar el cuidado al ambiente, ya que de una u otra forma esta situación se revierte sobre la salud del ser humano.

Es por ello, que es necesario la realización de una investigación que permita discriminar y examinar la mayor cantidad de información, fiable, existente en cuanto a los microplásticos. Una de las metodologías de mayor uso en las diversas áreas de las ciencias es la revisión sistemática o metaanálisis (Fok et al., 2020; Letelier et al., 2005; Molina-Arias, 2018), misma que, en el caso del estudio de microplásticos permitirá contabilizar la cantidad de información proveniente de fuentes fiables; resumir las técnicas empleadas para el muestreo, identificación y cuantificación de microplásticos, así como los lugares de mayor presencia y distribución de microplásticos reportados (Fok et al., 2020).

El carácter altamente dinámico de las zonas costeras define las propiedades fisicoquímicas de los ambientes de agua dulce, estuarios y lagunas relacionadas con las características oceanográficas de los mares colindantes. De ahí que la evaluación de la contaminación y la remediaciún de los ambientes costeros y marinos sea uno de los temas más complejos y actuales en ecotoxicología y gestión ambiental (Auta et al., 2017). Por tanto, la finalidad de este trabajo investigativo es analizar la información sobre las metodologías aplicadas al estudio del microplásticos en los ecosistemas costeros, mediante revisión sistemática exhaustiva de las investigaciones existentes en bases de datos, utilizando palabras claves de búsqueda. Así mismo se plantea la necesidad de transmitir los resultados científicos en un lenguaje común/divulgativo a fin de que el público en general tome conciencia de esta situación.
2. JUSTIFICACIÓN

La contaminación plástica constituye una gran amenaza para el equilibrio de los ecosistemas acuáticos a nivel global, siendo los microplásticos los de mayor preocupación, ya que han sido encontrados en mares y fuentes pluviales de todo el mundo, desde zonas costeras hasta la columna de agua y los fondos marinos (Barnes et al., 2009; Foley et al., 2018).

La problemática de los microplásticos en ambientes marino-costeros pasó inadvertida durante las últimas décadas del siglo XX, pasando a ser un tema trascendental en los últimos años, tanto en la literatura científica como en los medios de comunicación e, incluido al manejo público con regulaciones contra su uso (Foley et al., 2018). En este sentido, los investigadores y la sociedad en general cada vez abogan por más información científica y real, ante la preocupación sobre cómo los microplásticos pueden afectar los ecosistemas acuáticos y su biodiversidad (Browne et al., 2007; Seltenrich, 2015), teniendo como resultado el aumento exponencial de las investigaciones destinadas a los impactos e implicaciones de los microplásticos en los ecosistemas acuáticos (Lusher et al., 2017).

Es por ello que se vuelve crucial poder sintetizar esta información, de manera que, tanto la comunidad científica como civil puedan adquirir una perspectiva más detallada, comprendida y resumida de la situación/estado de los microplásticos. Para este fin, diversos autores (Fok et al., 2020; Letelier et al., 2005; Molina-Arias, 2018) han utilizado herramientas de revisión sistemática de la información permitiendo tener una contabilización de trabajos realizados, las técnicas empleadas para el muestreo y los lugares de mayor presencia de microplásticos.
3. OBJETIVOS

3.1. Objetivo general

Analizar las metodologías utilizadas en el estudio de microplásticos en ecosistemas costeros de cinco países identificados en Latinoamérica, Europa y Asia, mediante la revisión sistemática exhaustiva de las investigaciones existentes en las bases de datos de internet, que permitan sintetizar la data fidedigna de esta problemática.

3.2. Objetivos específicos

- Identificar la información existente sobre el estudio de microplásticos en ecosistemas costeros de cinco países en Asia, Europa y Latinoamérica para reconocer los diversos estudios relacionados a esta temática.

- Evaluar las metodológicas empleadas en el estudio de microplásticos en ecosistemas costeros de cinco países en Asia, Europa y Latinoamérica, con el fin de distinguir los tipos de muestreos aplicados y sitios estudiados.

- Contrastar las metodologías estandarizadas más actuales, utilizadas en el estudio de microplásticos en ecosistemas costeros de cinco países en Asia, Europa y Latinoamérica, resumiendo las estrategias de trabajo empleadas hoy en día.
4. MARCO TEORICO

4.1. Contaminación marina por plástico

La carga de basura marina en los mares es un problema creciente con consecuencias biológicas, ecológicas y socioeconómicas (Alomar et al., 2016); en ella el plástico constituye aproximadamente del 80 al 85% de la basura marina (Auta et al., 2017). Al hablar de plásticos, se habla de múltiples materiales utilizados en diversas áreas socioeconómicas, mayoritariamente destinados al empaquetamiento de productos alimenticios, que poseen un periodo de uso corto y un tiempo de existencia muy prolongado, lo que hace que se genere una elevada cantidad de residuos, y aunque, en parte se recicle. No obstante, esto no es significativo, ya que entre el 80 y 90% de basura plástica terminan en los ecosistemas (García-Regueiro, 2019).

A nivel mundial las concentraciones de plásticos se encuentran mayoritariamente en las zonas costa afuera, llevadas allí por las corrientes interoceánicas. En el caso del Pacífico Oriental, las mayores concentraciones de basura plástica se registran hacia el norte frente a la costa este de Estados Unidos, en donde se distribuye aproximadamente el 93% de la basura del Pacífico norte, mientras que, el restante 7% se distribuye entre las zonas adyacentes a México y Canadá (Law et al., 2014). Del otro lado de Norteamérica, en el océano Atlántico norte, la composición plástica se representa en un 79% como partículas de plástico de un tamaño entre 2 y 6 mm, así lo señalan Moret-Ferguson et al. (2010), quienes también indican que el 95% de las partículas de plástico en el Atlántico norte tienen una masa menor de 0,05 g, variando entre 0,0001 a 3,274 g.

La producción masiva de plásticos comenzó, como ya se mencionó anteriormente, en la década de 1960 (Thompson et al., 2004) y para el año 2017 ésta, superaba los 280 millones de toneladas a nivel mundial (Akdogan & Guven,
2019). Se estima que entre 4,8 y 12,7 millones de toneladas métricas de desechos plásticos mal gestionados ingresan a los océanos desde los países costeros cada año (Jambeck et al., 2015). Los pronósticos y estimaciones respecto a la creciente tendencias no son nada alentadoras, ya que Lebreton & Andrady (2019) aseveran que la generación de desechos plásticos y la mala gestión de su disposición conllevará a que en el 2060 se desechen a los océanos entre 155-265 millones de toneladas métricas de plástico por año.

Cabe destacar que las áreas costeras y marinas están constantemente sometidas a una presión creciente por las actividades humanas; los contaminantes como plaguicidas, contaminantes orgánicos persistentes (COP), hidrocarburos, metales pesados, plásticos y microplásticos impactan en el ecosistema marino (Kutralam et al., 2020). Los usos generalizados establecidos del plástico incluyen materiales de embalaje (39,5% de la producción total de plástico), materiales de construcción (20,1%), componentes de automoción (8,6%), aparatos electrónicos (5,7%) y materiales agrícolas (3,4%), y el resto incluye productos como como electrodomésticos y equipamiento deportivo (Horton et al., 2017).

4.1.1. Clasificación del plástico localizado en ambientes marinos

La contaminación plástica generalmente se subdivide en: nanoplástico (< 0,06 mm), microplástico (0,06-5 mm), mesoplástico (5-25 mm), macroplástico (> 25 mm) y megaplástico (> 1 m) (Bancin et al., 2019; Gregory & Andrady, 2003; Laglbauer et al., 2014; Lee et al., 2013). Los objetos y fragmentos de plástico tienen varios impactos negativos en el medio ambiente ya que los plásticos de tamaño macro pueden fragmentarse a tamaño meso y luego descomponerse en tamaño micro y nano. Las diferentes categorías de tamaño tienen impactos ambientales diversos, como:

- Los invertebrados intermareales ingieren partículas microscópicas de plástico de menos de <2 mm (Moore, 2008).
Las aves marinas ingieren gránulos de resina plástica contaminados con un tamaño <5 mm (Moore, 2008).

La estética y el valor recreativo de las playas se ve afectado más considerablemente por los macroplásticos (Jang et al., 2014).

Los mesoplásticos dañan y ponen en peligro a los buques de transporte al enredarse con hélices, anclas, timones y tuberías y válvulas de admisión bloqueadas (Mouat et al., 2010).

Los desechos plásticos de cualquier tamaño aumentan el riesgo de que las sustancias químicas tóxicas se liberen al medio ambiente y eventualmente se degraden a meso, micro y nano plásticos que pueden ingresar a la cadena alimentaria directamente o contaminarlo mediante la lixiviación de sus ingredientes químicos y a menudo tóxicos (Koelmans et al., 2014).

4.2. Microplásticos en el ambiente marino-coastero

Los microplásticos se pueden definir como pequeñas partículas de plástico de tamaño superior a 0,06 mm e inferior a 5 mm. Estas partículas extremadamente persistentes; con el tiempo, han contaminado todos los compartimentos de los ecosistemas marinos, incluida la red alimentaria y la biota en diferentes niveles tróficos, como bivalvos (Zhao et al., 2018), crustáceos (Zhang et al., 2019), peces y mamíferos (Lusher et al., 2015; Nelms et al., 2018). Estos microplásticos se componen principalmente de cloruro de polivinilo (PVC), nailon y tereftalato de polietileno (PET), que poseen más probabilidades de hundirse; de polietileno (PE), polipropileno (PP), poliestireno (PS), que tienden a flotar y menos frecuentemente el alcohol polivinílico (PA) y poliamida (PA) (Avio et al., 2015; Carr et al., 2016). La persistencia de estos componentes en el medio ambiente, depende de la resistencia a la degradación por microrganismos, según mencionada Yoshida et al. (2016).
4.2.1. Origen de los microplásticos

Los microplásticos se originan a partir de dos fuentes: primarias y secundarias (Gregory & Andrady, 2003).

4.2.1.1. Microplásticos de origen primario

Las fuentes primarias de los microplásticos corresponden a los productos directos utilizados, como las perlas limpiadoras presentes en detergentes y dentífricos, limpiadores faciales, exfoliantes; así como partículas de polietileno (PE), polipropileno (PP) y poliestireno (PS) en productos cosméticos (sombra de ojos, desodorante, rubores en polvo, base de maquillaje, rímel, crema de afeitar, lociones de baño de burbujas, tintes para el cabello, esmaltes de uñas, repelentes de insectos y protector solar), productos médicos y para bebés (Cole et al., 2011; Duis & Coors, 2016; Horton et al., 2017). Por tanto, los microplásticos primarios son aquellos que se fabrican para aplicaciones industriales o domésticas particulares para que tengan un tamaño microscópico (Auta et al., 2017). Dentro de este contexto hay que considerar que muchos polímeros de uso común como el polietileno y el poliestireno mencionados son extremadamente resistentes a la biodegradación, esto debido principalmente a su alto peso molecular, la hidrofobicidad y la estructura química reticulada (Horton et al., 2017).

Los microplásticos primarios ingresan al medio acuático a través de la descarga de aguas residuales domésticas o el derrame de polvos o gránulos de resina plástica utilizados para el chorro de aire (Akdogan & Guven, 2019). Otro origen importante es la aplicación de lodos de depuración que contienen fibras sintéticas o microplásticos sedimentados de productos de cuidado personal o domésticos (Horton et al., 2017). También se incluyen aquellos que se producen mediante la extrusión, como precursores de otros productos o de uso directo como abrasivos en productos de limpieza, fluidos de perforación y medios de chorro de aire (Alomar et al., 2016). Estos productos de consumo se caracterizan
como de “uso abierto” ya que están destinados a ser lavados y terminar en desagües (Auta et al., 2017). También se ha informado cada vez más sobre el uso de microplásticos en medicina como vectores de fármacos (Patel et al., 2009).

4.2.1.2. **Microplásticos de origen secundario**

Las fuentes secundarias lo constituyen la fragmentación de desechos plásticos más grandes (Cole et al., 2011), es decir, que se originan a partir de procesos físicos, químicos, mecánicos y biológicos que dan como resultado el fraccionamiento de los desechos plásticos (Horton et al., 2017). Los objetos que generan microplásticos de fuente secundaria generalmente son artículos y recipientes para alimentos o bebidas, fibras de ropa sintética, desechos industriales y componentes de algunos productos de belleza (Biginagwa et al., 2016). Entre los mencionados anteriormente, las fibras sintéticas son la forma más comúnmente reportada (Browne et al., 2011), lo cual Napper & Thompson, (2016) lo atribuyen a la abrasión continua de la ropa y tapicería hecha de textiles sintéticos y la liberación de efluentes de lavadoras. Según Browne et al. (op.cit.) se llegan a generar hasta 1900 fibras por artículo durante un solo lavado, mismos que son liberados a ambientes acuáticos y terrestres a través de efluentes de aguas residuales y alcantarillado; el mismo autor argumenta que las fábricas textiles también podrían ser una fuente puntual de emisión al medio ambiente.

El principal proceso de desintegración es la exposición a la radiación ultravioleta (UV), que cataliza la foto-oxidación del plástico, lo que hace que se vuelva quebradizo y se fragmente en microplásticos (Akdogan & Guven, 2019). Si bien el calor, la luz solar y las condiciones bien aireadas son ideales para generar microplásticos a través de procesos de fragmentación iterativos, las condiciones frías y anóxicas de los ambientes acuáticos y los sedimentos pueden causar una degradación muy lenta de las partículas plásticas durante siglos (Zhang, 2017).
La escorrentía superficial de tierras agrícolas y áreas urbanas, es otra fuente importante de carga de microplásticos, como lo señalan Nizzetto et al. (2016) y Akdogan & Guven (2019), quienes indican que el efecto es en el suelo, tanto por la aplicación de lodos de depuración para enmienda del suelo, como por el uso de plásticos agrícolas y coberturas plásticas para aumentar el rendimiento de los cultivos. Estos autores también sugieren que los neumáticos y las marcas viales pueden causar contaminación microplástica, que a través de la escorrentía de aguas pluviales son llevadas hasta zonas costeras. Además, Dris et al. (2016) y Cai et al. (2017) aseveran que grandes cantidades de fibras, particularmente en áreas altamente urbanizadas pueden ser transportadas a través de la lluvia atmosférica hasta el medio marino, mientras que Magnusson et al. (2016) también lo atribuyen a las fuertes ventiscas y corrientes de aire (generalmente estas partículas provienen de fibras sintéticas de ropa y casas, césped artificial, vertederos e incineración de desechos).

4.2.2. Efectos ambientales de los microplásticos en zonas costeras

Los microplásticos son omnipresentes en el medio ambiente, y los entornos marinos se ven especialmente afectados debido a la cantidad de desechos plásticos que reciben, por lo que su acumulación representa un problema ambiental emergente y una amenaza para la vida marina (Danopoulos et al., 2020; Kutralam et al., 2020).

Los efectos negativos de la presencia de los microplásticos han sido múltiples, principalmente debido a la creciente concentración de los mismo en los ambiente naturales, pudiendo llegar a 100000 partículas de plástico por m³ en aguas adyacentes a industrias manufactureras del plástico (Norén & Naustvoll, 2010). El mayor riesgo que representan en los medios acuáticos, es debido a los peligros ecotoxicológicos que plantean (Akdogan & Guven, 2019), por cuanto, su pequeño tamaño los hace fácilmente disponibles para su ingestión por una amplia gama de organismos en el medio marino (Auta et al., 2017).
4.2.2.1. **Ingestión de microplásticos**

La ingestión de microplásticos por parte de especies marinas puede comprometer las reservas de energía ya que pueden bioacumularse y biomagnificarse a través de la cadena alimentaria; además, a ello se suma que, su área de superficie relativamente grande y su composición hidrófoba los hacen propensos a adsorber moléculas tóxicas del agua de mar circundante, incluyendo metales pesados (Cole et al., 2011), así como hidrocarburos aromáticos policíclicos (HAP) y bifenilos policlorados (PCB) (Bakir et al., 2014; Klein et al., 2015). Cole et al. (op.cit.) indican que los organismos más susceptibles a ingerir microplásticos son los de nivel trófico inferior, ya que muchos de ellos se alimentan indiscriminadamente con una capacidad limitada para diferenciar entre partículas plásticas y alimentos.

En la revisión realizada por Danopoulos et al. (2020) mencionan que, se han encontrado partículas de microplásticos en varias partes de organismos como el tracto gastrointestinal, hígado, branquias y músculo. Estos autores acotan además que, muchos de estos son de interés comercial incluyendo bivalvos, algunos crustáceos, algunos peces pequeños, peces grandes y mamíferos, qué posteriormente por bioacumulación terminan afectando al ser humano. Adicionalmente Morét-Ferguson et al. (2010) indican que las partículas de microplásticos pueden causar daño o la muerte a las aves marinas por ingestión. De igual manera Sutton et al. (2016) y Fossi et al. (2016), agregan que la ingestión de estas diminutas partículas de plástico causa estrés patológico, falsa saciedad, complicaciones reproductivas, producción de enzimas bloqueadas, tasa de crecimiento reducida y estrés oxidativo.
4.2.3. Consecuencias sociales de los microplásticos

Según Danopoulos et al. (op.cit.), la consecuencia de mayor relevancia de los microplásticos en la sociedad humana se debe a que están en las tres categorías de peligros (biológicos, químicos y físicos) implicados en la seguridad alimentaria y de salud. Los efectos de estos microplásticos pueden provenir de los componentes primarios de los plásticos (polímeros), los aditivos que se utilizan para mejorar sus atributos (plastificantes), los contaminantes químicos absorbidos mientras se encuentran en el medio ambiente (Bakir et al., 2014; Hartmann et al., 2017; Klein et al., 2015) o los microorganismos que colonizan sus superficies (Viršek et al., 2017).

Si bien, los efectos sobre la salud de la biota marina está clara, en la revisión de Danopoulos et al. (2020) se menciona que los efectos sobre la salud humana aún no están claros, por lo cual es necesario abordar este riesgo emergente en nuevas investigaciones, e implementar rápidamente estrategias de mitigación para la protección de la salud humana, de forma prioritaria. Otros autores indican que los posibles efectos en la salud pueden ser:

- La ingestión directa de partículas microplásticas a través de los alimentos, principalmente mariscos, y la posible lesión interna resultante (Dehaut et al., 2016).
- Posibilidad de que los microplásticos sirvan como vectores patógenos (Vethaak & Leslie, 2016).
5. METODOLOGIA

5.1. Compilación la información

Se compiló la información respecto a las metodologías aplicadas en el estudio de microplásticos de forma general y enfocados a ecosistemas costeros, de los países con mayor data disponible de Asia, Europa y Latinoamérica.

Los países seleccionados fueron: Inglaterra en Europa; China en Asia, y Brasil, México y Ecuador en Latinoamérica; estos países seleccionados son los mayores generadores de investigaciones referentes a microplásticos, en su región, acorde a lo indicado por Qin et al. (2020), Yu et al. (2020), Zhang et al. (2020) y Kutralam et al. (2020). Cabe recalcar que Ecuador a pesar de no ser uno de los principales países latinoamericanos generadores de información, fue seleccionado por ser un país en donde se realiza la actual revisión sistemática.

Las pautas para la selección de la información fueron tomadas de los protocolos de Danopoulos et al. (2019, 2020) y Fok et al. (2020), por tanto, la búsqueda consistió en:

- Utilizar buscadores y bases de datos de información científica verificable y fiable (Elsevier, Google académico y Scielo).
- Aplicar varias combinaciones de palabras clave de búsqueda "microplásticos", "desechos plásticos", "ecosistema costero" y "país de interés".
- No establecer límites de idioma ni de diseño de estudio para las búsquedas.
- Incluir solamente estudios primarios, excluyendo comentarios, artículos de opinión, actas de conferencias, editoriales e informes no revisados por pares.
- Recuperar los estudios que informen sobre microplásticos en zonas costeras, excluyendo las demás investigaciones enfocadas en ambientes dulceacuícolas, columna de agua, sedimento de zonas no costeras, etc.
- Eliminar documentos duplicados.
- Discriminar documentos cuyos títulos y resumen no traten sobre la aplicación de metodologías para el estudio de microplásticos.

5.2. Evaluación de las variables metodológicas empleadas en el estudio de microplásticos en zonas costeras

Para una revisión más detallada, se utiliza las escalas de metodologías de muestreo e identificación de microplástico, tipo de ecosistema costero, origen de la publicación, siguiendo las pautas del trabajo de Fok et al. (2020).

5.3. Análisis de las metodologías estandarizadas más actuales, utilizadas en el estudio de microplásticos

Se contrastan las metodologías empleadas en los últimos 5 años en cada uno de los países, acorde a los ecosistemas de estudio y objeto puntual de estudio (sustrato, columna de agua o biota).
6. ANÁLISIS E INTERPRETACIÓN DE RESULTADOS

6.1. Compilación la información

6.1.1. Inglaterra

De un total de 100 trabajos de investigación, recopilados de las bases de datos seleccionadas, destinados al estudio del microplásticos en el ambiente marino, solo 6 están destinados al estudio de microplásticos en zonas costeras, mientras que 83 están enfocados en otros ambientes (pelágico, bentónico y oceánico) y 11 son trabajos de revisión y meta-análisis de la información ya existente (Figura 1).

6.1.2. China

China es el país con mayor número de investigaciones dedicadas al estudio de microplásticos en ambientes marinos, y por ende también en los ambientes costeros. De los 150 artículos encontrados en zonas costeras, 13 comprenden a estudios de revisión, 87 son realizados en ecosistemas marinos no costeros y los 50 restantes están enfocados en ambientes costeros (Figura 2).
6.1.3. Brasil

Brasil es el principal país latinoamericano que dedica sus esfuerzos investigativos a estudiar los microplásticos en ambientes marinos. Así, de los 30 artículos recuperados que tratan sobre microplásticos en ambientes marinos, 4 corresponden a revisiones bibliográficas, 11 a estudios en ecosistemas no costeros y 15 están centrados en análisis en zonas costeras (Figura 3).

Figura 2. Distribución de investigaciones de microplásticos en China (Fuente: La autora).

Figura 3. Distribución de investigaciones de microplásticos en Brasil (Fuente: La autora).
6.1.4. México

En México, el segundo país latinoamericano con mayor número de publicaciones sobre microplásticos, la información se distribuye entre análisis en ecosistemas no costeros con 11 investigaciones, y estudios en zonas costeras con 9 artículos. Referente a revisiones bibliográficas la información es nula (Figura 4).

6.1.5. Ecuador

Ecuador ocupa el octavo lugar en número de publicaciones sobre microplásticos a nivel latinoamericano (Kutralam et al., 2020). Dicha aseveración se ve reflejada en la existencia de solo dos estudios referentes al estudio de ecosistemas costeros en relación a microplásticos (Figura 5).

Figura 4. Distribución de investigaciones de microplásticos en México (Fuente: La autora).

Figura 5. Distribución de investigaciones de microplásticos en Ecuador (Fuente: La autora).
6.2. Variaciones metodológicas empleadas en el estudio de microplásticos

6.2.1. Tipos de muestreos y ecosistemas muestreados

6.2.1.1. Inglaterra

A nivel de Inglaterra, los estudios revisados poseen metodologías variadas, el 67% de los estudios efectuados en Inglaterra provienen de las zonas de playas y de sedimento donde las recolecciones se llevaron a cabo mediante la aplicación de transectos y, el posterior análisis en laboratorio. En el caso de la biota, el 17% de las investigaciones consisten en extraer muestras de coral, preservarlas y posteriormente analizarlas en laboratorios. Finalmente, en el 16% de estudios en la columna de agua colectaron las muestras mediante el uso de redes de arrastres y posterior preservación de las muestras para su análisis en laboratorio (Figura 6; Tabla 1).

6.2.1.2. China

China es el país que ocupa el primer lugar en la generación de nuevas investigaciones sobre los microplásticos. El 50% de sus estudios están dirigidos al análisis de zonas de playas y sedimentos, mientras que el 30% se inclina más hacia el estudio de la columna de agua cercana a la costa, Así también, el 20% de sus publicaciones proveen información sobre la incidencia de los microplásticos, sobre la biodiversidad, principalmente en peces, moluscos bivalvos y zooplancton. (Figura 6, Tabla 1).
6.2.1.3. Brasil

El 60% de los trabajos en Brasil se centran en los muestreos de playas y sedimentos. La metodología aplicada es similar en todos los muestreos, aunque adaptada a los requerimientos de cada investigación, la recolección de muestras por transeptos. El 25% de los trabajos están enfocados en el muestreo de microplásticos en aguas superficiales cercanas a la costa y en relación a este, el 15% comprende muestreos de microplásticos de peces de zonas estuarinas, por lo cual recurren a artes de pesca para capturarlos y posteriormente analizar su contenido gástrico en un laboratorio (Figura 6, Tabla 1).

6.2.1.4. México

El 78% de las investigaciones centradas en los microplásticos se realizan en playas o sedimentos en zonas costeras; las metodologías utilizadas corresponden a la aplicación de transectos conjugado con cuadrantes y muestreo al azar. En menor incidencia, 22% de los estudios realizados en México se llevan a cabo en la columna de agua. (Figura 6, Tabla 1), utilizándose redes de plancton con arrastre de red horizontalmente para la obtención de la muestra.

6.2.1.5. Ecuador

En Ecuador las dos evidencias de estudio de microplásticos se centran en análisis de microplásticos en la biota (Figura 6, Tabla 1). Ambos trabajos analizaron en el contenido de microplástico intestinal. En la investigación de Mieles (2020) se analizó al pez *Ariopsis seemanni*; utilizando artes de pesca para la captura de los peces, que posteriormente fueron disseccionados y analizados en laboratorio para determinar la incidencia de microplásticos. La investigación restante de Lino (2019) estudió los especímenes *Scomber japonicus, Opisthonema libertate* y *Auxis thazard*; en un puerto pesquero y
posteriormente se realizó su control biométrico, disección, extracción, identificación y clasificación de microplásticos.

![Diagrama de barras](image)

Figura 6. Enfoque de las investigaciones de microplásticos en los diferentes ambientes costeros (Fuente: La autora).

6.2.2. Origen de las publicaciones

De un total de 82 estudios científicos publicados entre los 5 países, incluidos en este análisis, China contribuye con el 60,98% de las publicaciones registradas, seguido de lejos por Brasil con el 18,29%, México con el 10,98%, Inglaterra con el 6%, y Ecuador con el 2,44% (Figura 7).
Figura 7. Porcentaje de contribución al estudio de microplásticos en ecosistemas costeros de cada país seleccionado en este estudio (Fuente: La Autora).

6.3. Metodologías estandarizadas más actuales, utilizadas en el estudio de microplásticos

En la Tabla 1 se resumen la información encontrada relacionada con la extracción de microplásticos en ambientes costeros marinos y de playas arenosas y de praderas de fanerógamas. Posteriormente se realiza el análisis e interpretación de los procesos estandarizados utilizados en cada uno de las publicaciones revisadas.

Tabla 1, Variables aplicadas en las metodologías de extracción de muestras de microplásticos en los cinco países analizados.

<table>
<thead>
<tr>
<th>País</th>
<th>Enfoque de las investigaciones</th>
<th>Tipo de extracción de muestra</th>
<th>Años de los estudios</th>
<th>Autor (es)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Playas y Sedimentos</td>
<td>Columna de agua</td>
<td>Biota</td>
<td>Manual</td>
</tr>
<tr>
<td>China</td>
<td>25</td>
<td>-</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>15</td>
<td>-</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Inglaterra</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
6.3.1. Inglaterra

En el caso de los estudios de Massos & Turner (2017) y Turner et al. (2019), realizados sobre la zona intermareal, el muestreo fue selectivo, recalentando muestras de plásticos moldeados no porosos visibles en un transecto de 10 m marcado por una línea de cuerda. Estos investigadores extrajeron los microplásticos utilizando pinzas plásticas para posteriormente almacenarlos en una caja transparente de polietileno, excluyendo plástico espumado y desechos filamentosos. El tamaño de la muestra lo examinaron in-situ con una regla transparente y fueron medidos con mayor precisión con calibradores en laboratorio. Basaron su recolección en tamaños de <5 mm en al menos dos dimensiones y no más de 10 mm en cualquier dimensión.

En el laboratorio, las muestras fueron enjuagadas con agua Milli-Q a través de un tamiz y con la ayuda de un cepillo para remover escombros y epífitas antes de secarlas a 40°C por 24 h. Después se registraron los pesos secos y las muestras se dividieron según su apariencia como plásticos primarios o secundarios y se codificaron según el color. Los polímeros componentes de las muestras seleccionadas (n = 30) se determinaron mediante espectroscopía de
Por su parte, Rotjan et al. (2019), quienes estudiaron los microplásticos en corales, recolectaron cuatro colonias de Astrangia poculata y las conservaron en formalina a base de zinc al 4%. En el laboratorio, los corales se retiraron con pinzas de metal para enjuagarlos con agua desionizada ultra limpia (DI) para eliminar los desechos de la superficie, se secaron al aire en una caja petri para luego pesarlos. Los corales fueron descalcificados con una solución de HCl al 0,9%, se filtraron a través de un tamiz de 20 mm, se enjuagaron y se lavaron a contracorriente con agua desionizada ultralimpia en un vaso de precipitación de vidrio, se pipetearon en un portaobjetos de vidrio para microscopio, posteriormente se secaron al aire en una campana de flujo laminar. Todas las partículas contadas tenían 40 mm o más y se caracterizaron en fibras, redondas (ovoides) o de forma variada. La identificación del polímero fue completada utilizando un Smiths IlluminatIR II, reflectancia atenuada (ATR), espectroscopía infrarroja de transformada de Fourier (FTIR).

Unsworth et al. (2021), estudiaron los microplásticos en los sedimentos en zonas de pasto marino en el norte de Inglaterra. Para tal fin, colocaron al azar cinco cuadrículas de 0,25 m² (a 5 m de distancia entre sí), dentro de la pradera de pastos marinos. En el centro de cada cuadrante usaron un solo colector prelavado (5 cm de diámetro y 20 cm de longitud) para recolectar los 5 cm superiores de sedimento. Además, tomaron otros 5 núcleos al azar en un hábitat sin vegetación, al menos a 75 m de la pradera utilizando el mismo procedimiento. El muestreo de todos los pastos marinos se realizó en el centro de la pradera, donde esperaban que la densidad sea mayor, motivo por el cual tomaron un núcleo adicional del centro de dos de los cinco cuadrantes, los núcleos se almacenaron en bolsas ziplock etiquetadas, luego en congeladores de laboratorio a -30 °C hasta el análisis. Para minimizar la contaminación, el muestreo lo llevaron a cabo con el viento en contra, para evitar que las fibras
sintéticas de la ropa soplarán hacia la muestra, contaminándola y utilizando el mismo descorazonador (lavado entre recolecciones) para todas las muestras.

Por otro lado, Lindeque et al. (2020), estudiaron los microplásticos en el suelo del canal de la Mancha, costa occidental de Plymouth en el Reino Unido, capturándolos con tres redes tipos de Neuston (100, 333 y 500 mm); con apertura de 0,2 m²; circular 0,5 m aparejadas en paralelo y arrastradas desde la manga de una embarcación (arrastre de 500 m; 0.5-1.5 nudos), manteniéndolas a media agua. En este proceso cada red y copo se enjuagan en un balde limpio con agua de mar superficial recolectada utilizando el sistema de admisión del barco. Todos los trozos grandes de restos flotantes (por ejemplo, madera, macroalgas, plumas) se enjuagan con agua de mar filtrada (0,2 mm) para captar los microplásticos adheridos. El contenido del cubo se vierte a través de una malla de naylon que coincidía con el tamaño de malla de la red y se enjuaga con agua de mar filtrada (0,2 mm). Estos investigadores almacenaron las muestras a 80 ºC y posteriormente las liofilizaron antes del análisis. El microplástico fue caracterizado por su composición química, forma, tamaño y color. El dimensionamiento fue realizado con el software CellSens y microscopio óptico (Olympus SX16), para el análisis polimérico se seleccionaron partículas al azar usando reflectancia atenuada (ATR), espectroscopia infrarroja de transformada de Fourier (FTIR) o micro ATR.

Sadri & Thompson (2014) colectaron los microplásticos flotantes en el estuario Tamar, Plymouth; con la ayuda de una red de manta de 0,50x0,15 m (malla de 300 µm), la cual fue remolcada contra el flujo de la marea a una velocidad de 4 nudos durante 30 minutos. En este proceso las muestras se transfieren a frascos de vidrio y se llevan a laboratorio para filtrar su contenido a través de tamices con diferentes tamaños de malla (3 mm, 1 mm y 270 mm). Cualquier pieza desconocida pero potencialmente plástica se transfiere a placas Petri, clasificándolas en 4 grupos de tamaños diferentes (> 5 mm, 3-5 mm, 1-3 mm y <1 mm) y formas (fragmentos, láminas, fibras y pellets).
6.3.2. China

Para la colecta de las muestras se aplica la metodología de transectos, durante la marea baja. Estas muestras se recolectan en los 2 cm superiores del sedimento, empleando cinco cuadrantes separados de 0,3×0,3 m, luego la muestra se homogeniza y seca al aire. Con una malla de acero inoxidable con el tamaño de poro de 5 mm, se tamiza la muestra y se eliminan las partículas grandes (> 5 mm). Los microplásticos de sedimentos se extraen mediante la selección de una solución de cloruro de calcio con una densidad de 1,38 g cm\(^{-3}\) y solución salina concentrada para la flotación microplástica. Brevemente, se transfieren 500 ml de agua superficial o 100 g de muestra de sedimento a un vaso de precipitados de 2.5 L, luego adicionan 2 L de solución salina concentrada. Después se añade metafosfato de sodio a las muestras de sedimento para evitar la agregación. La mezcla se agita usando una varilla de vidrio durante 15 min, luego se utiliza una bomba de aireación para acelerar la separación de microplásticos y sedimentos. El tiempo de sedimentación es de 24 h. Luego, la solución se tamiza utilizando una malla de acero inoxidable con un tamaño de poro de malla 300 (50 μm) con la ayuda de una bomba peristáltica. Este proceso se repite dos veces. Las partículas de plástico se identifican con un estereomicroscopio con el objetivo de aumento 10x. Los microplásticos se identifican y se transfirieren a una caja negra para ser fotografiados (Li et al., 2018).

Por su parte (Teng et al., 2020), en los muestreos superficiales de zonas marinas costeras, se realizan mediante arrastres horizontales en transectos. Se recolectan muestras de microplásticos utilizando un cable de superficie con redes de colecta de arrastre (1m de ancho x 15,8 abertura vertical, 3m de largo y 333 μm de malla). El equipo del medidor de flujo se debe fijar en el medio del marco de la red. La red debe ser remolcada horizontalmente en la superficie durante 15 min a aproximadamente 1.5 a 2.0 nudos por cada transecto. Al final del arrastre, se levanta la red y se lava desde el exterior con agua de mar natural en el sitio para que todas las muestras ingresen al recolector ubicado en la parte inferior de la red. Se registran los valores inicial y final del caudalímetro. Los desechos plásticos y otros desechos de más de 2,5 mm de diámetro se retiran.
con pinzas de acero y se colocan en recipientes de vidrio de 1000 ml. Las muestras en el colector se transfieren a un matraz de 500 ml. Las redes usadas y los recolectores de muestras se empacan con papel de aluminio y se transportaron al laboratorio para una posterior extracción de los microplásticos que se acumularon en la superficie de la red. Todas las muestras se almacenan a 4 ºC.

Ya en el laboratorio Teng et al. (2000), pasan las muestras a través de tamices de malla de acero inoxidable de 500 y 300 µm apilados. Los plásticos que quedan retenidos en el primer tamiz se separan utilizando pinzas de acero. Los sólidos recogidos en los tamices de 300 µm fueron transferidos a un vaso de precipitación limpio. Para eliminar el material orgánico mezclado en la muestra, se debe llevar a cabo el procedimiento de oxidación con peróxido de hidrógeno. Una vez pasado la oxidación, los precipitados se colocan a temperatura ambiente durante al menos una semana. Cabe indicar que, durante el proceso de digestión, el vaso de precipitado es cubierto con papel de aluminio. Los sólidos en la solución mezclada se filtran a través de un filtro de fibra de vidrio (47 mm de diámetro y 0,7 mm de tamaño de poro) usando un sistema de vacío. La composición de la muestra se puede identificar mediante espectroscopía infrarroja de reflexión total atenuada por Transformada de Fourier. Se analizan todas las muestras de plástico; para los plásticos con un diámetro superior a 2 mm, el tamaño se mide directamente con una regla y el diámetro, la forma y el color se registran basándose en observación directa.

6.3.3. Brasil

Para el muestreo en playas arenosa se sigue un proceso similar a los anteriores, aunque adaptada a los requerimientos de cada investigación. Para evaluar la extensión completa de la playa, se recolectan muestras de las zonas centro, norte (N) y sur (S) de acuerdo con su posición en la playa. Las muestras corresponden a los primeros dos centímetros de cuadrantes de 900 cm² y se recolectan con una pala de mano. En el laboratorio se secan en el horno a 100ºC y se tamizan a través de una malla de 1 mm. En este trabajo se analizan
fraciones <1 mm, donde los microplásticos son aislados. Durante la extracción, se toman precauciones como una mínima exposición al aire y ropa de laboratorio adecuada para evitar la contaminación externa. En un vaso de precipitados de 2 litros, se coloca 1 litro de solución salina NaCl (1,2 g L⁻¹) a cada muestra (muestra colectada en 900cm² a 2 cm de profundidad), y se agita durante 30 minutos. A continuación, se deja reposar la mezcla durante 30 minutos para permitir la sedimentación. Los polímeros con densidades más bajas, flotan y este sobrenadante se filtra al vacío en un tamiz de malla de 2 µm. Las muestras se lavan con solución salina tres veces para garantizar la extracción de plásticos. Los datos de microplásticos se analizan bajo el estereomicroscopio y se informan en cantidades totales (número de fragmentos o número de fibras por muestra), densidad (fragmentos m⁻² o fibras m⁻²), tipo (fragmentos, fibras), área total (mm²) y color.

6.3.4. México

El método de transecto conjuntamente con el uso de cuadrantes es el protocolo más común en México para el muestreo de plástico sobre sustratos costeros. Consiste en colocar 10 transectos y sobre estos dos cuadrantes de 0.25×0.25 m al azar para un total de seis muestras por sitio. En cada cuadrante de muestreo, la capa superior de arena (de aproximadamente 5-6 cm de profundidad) se recoge y se coloca en un recipiente de plástico (~2 L) y se transporta a laboratorio para su procesamiento. Las piezas de microplásticos se separan de la arena mediante densidad, donde se utiliza una solución salina saturada de 1,167 g/ml (aquellos microplásticos que tienen una densidad superior a 1,167 g/ml se descartan). La muestra de sedimento se mezcla con una solución salina de 1,5 litros y se agita durante 30 segundos. A continuación, se deja reposar el sedimento durante 2 min. Durante este tiempo, los microplásticos flotan hasta la parte superior de la superficie o permanecen en suspensión mientras la arena se deposita en el fondo del recipiente. Los microplásticos se apartan de la solución usando un tamiz de 63 µm y se colocan en placas petri. Se elimina cualquier material no plástico presente. Seguido, se
separa el agua de la arena en otro recipiente y se extrae cualquier microplástico visible utilizando el mismo tipo de tamiz. Nuevamente la solución se filtra, pero esta vez, a través de un tamiz de 125 µm para garantizar que se recojan todos los microplásticos visibles. Los microplásticos recolectados se clasifican en placas petri y se dejan secar en un ambiente de clima controlado para evitar una mayor degradación y la contaminación de la muestra. Una vez secos, los microplásticos recolectados se evalúan bajo un estereomicroscopio para confirmar su naturaleza (Beckwith & Fuentes, 2018).

En el caso de los muestreos en la superficie del agua estos son realizados mediante el uso de redes de plancton, tipo manta, con una apertura de 62 x 16 cm, de 150 micras y con dos alas de metal huecas, que le permitan flotar durante todo el muestreo. Se arrastra la red horizontalmente durante 15 minutos a aproximadamente 3,8 nudos en una misma dirección, es decir, lo más recto que se pueda. Todas las muestras se preservan en una solución al 4% de formaldehído para análisis cualitativos y cuantitativos de partículas plásticas (Olavarrieta-García, 2017).

6.3.5. Ecuador

Dos metodologías han sido reportadas en Ecuador relacionadas al análisis de microplásticos en el tracto digestivo de los peces Ariopsis seemanni, Scomber japonicus, Opisthonema libertate y Auxis thazard, comúnmente llamados bagre morado, caballa, sardina gallera y botellita, respectivamente (Mieles, 2020; Lino 2020).

Ariopsis seemanni se lo captura comúnmente con atarraya, red de cerco y red manual de acuario, con ojos de malla ½”, 1/4”, 1/8”, respectivamente. Las ejemplares son llevados a laboratorio, donde para cada individuo se registra la longitud total y el peso total con un ictiómetro y una balanza digital,
respectivamente. Se realiza un corte longitudinalmente desde el ano hasta la boca a cada individuo para retirar el estómago e intestino; luego el tracto digestivo fue pesado, posteriormente se rotula y se fija en alcohol al 95%. Con el objeto de reducir la contaminación de fibras se coloca una caja petri con agua destilada junto al área de trabajo, con el objeto de que capte fibras del aire que posteriormente sean comparada con las de la muestra y, ser eliminadas al sospecharse que se trate de un efecto del muestreo y no propio de la muestra per se.

Para el análisis de la presencia de microplásticos, se coloca el tracto digestivo fijado en una solución de HCl (5%) por 4 horas. Posteriormente a la limpieza, el tracto digestivo se sumerge en una solución de 70 partes de NaOH 1M con 20 partes de jabón neutro y 10 partes de Hipoclorito de sodio (NaClO). Esta mezcla se mantiene a 60 ºC, incubándose durante 48 horas en un matraz aforado de 2L. La separación por densidades se realiza introduciendo la muestra en un Erlenmeyer con la disolución saturada de NaCl (1.2 kg NaCl/L), se agita vigorosamente y, una vez que sedimenta, se recoge el líquido sobrenadante. Este se filtra y se seca a 60 ºC por 2 días. La identificación de partículas de microplásticos se realiza con un estéreomicroscopio: Posteriormente las partículas son fotografiadas y digitalizadas para describir sus características físicas tales como color, forma, y tamaño.

En el caso de ejemplares de Scomber japonicus, Opisthonema libertate y Auxis thazard, adquiridos en un puerto pesquero de Santa Elena, Lino (2019), recolecto 30 individuos por especie, cada mes. Las muestras se trasladaron en una hielera a temperatura de 0 ºC al laboratorio para el análisis de microplásticos. Se registró el peso de cada individuo y de igual manera se tomó datos de longitud total. La disección se realizó mediante un corte longitudinal desde el ano hasta la boca para extraer el tracto digestivo, el cual se colocó en una caja de Petri para ser pesado en una balanza analítica. Se extrajeron los fragmentos de plástico, se identificaron y clasificaron.
7. CONCLUSIONES

La información compilada permitió corroborar que China es el mayor generador de investigaciones sobre microplásticos en ecosistemas costeros, considerando también que es el país con mayor producción de plástico en el mundo. Después están Brasil y México que contribuyen con data relevante en Latinoamérica. Con menor aporte está Inglaterra que se enfoca en otros ambientes y Ecuador que tiene poco desarrollo investigativo sobre microplásticos.

Los países analizados, exceptuando Ecuador, tienden a realizar las investigaciones de ecosistemas costeros en zonas de playas o estuarinas, mientras que le siguen los muestreos en la columna de agua y en menor medida se observan los análisis de microplásticos en la biota. En el caso de Ecuador, las investigaciones direccionadas al monitoreo de los microplásticos que podrían provocar severas alteraciones al equilibrio ecosistémico, son escasas y destinadas solo al análisis de microplástico en la biodiversidad.

Las metodologías realizadas en las zonas de playa pueden ser comparativas dado que se diferencian por la superficie muestreada, siempre y cuando se utilice el mismo micraje para la obtención de la muestra. Sin embargo, en aquella utilizada para la colecta en la columna de agua trata de una diferente velocidad de la embarcación lo que podría minimizar la colecta de microplásticos de diferente densidad, cuya flotabilidad varía.
8. BIBLIOGRAFÍA

Recuperado el 25 de Febrero de 2021, de https://doi.org/10.1039/c5em00158g

20 de Febrero de 2021, de https://doi.org/10.1021/acs.est.5b00492

Recuperado el 22 de Febrero de 2021, de https://doi.org/10.1016/j.scitotenv.2019.134838

Febrero de 2021, de https://doi.org/10.1016/j.scitotenv.2018.10.007

Zhao, J., Ran, W., Teng, J., Liu, Y., Liu, H., Yin, X., Cao, R., & Wang, Q. (2018). Microplastic pollution in sediments from the Bohai Sea and the Yellow Sea,

9. ANEXOS

Tabla 2. Todos los autores según el enfoque de investigación de los cinco países analizados.

<table>
<thead>
<tr>
<th>Enfoque de investigación/País</th>
<th>China</th>
<th>Inglaterra</th>
<th>Brasil</th>
<th>México</th>
<th>Ecuador</th>
</tr>
</thead>
<tbody>
<tr>
<td>Playas y sedimentos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Cai et al., 2018; Chen et al., 2018; Deng et al., 2020; Fok et al., 2017; Y. Huang et al., 2019; Jia Li et al., 2018; Jingjing Li et al., 2020; R. Li et al., 2020; Lin et al., 2020; Pervez et al., 2020; Tan et al., 2020; Teng et al., 2020; J. Wang et al., 2019; M. H. Wang et al., 2019; Q. Wang et al., 2020; T. Wang et al., 2020; F. Wu et al., 2020; X. Wu et al., 2021; Yao et al., 2019; B. Zhang et al., 2019; D. Zhang, Cui, Zhou et al., 2020; L. Zhang et al., 2019; L. Zhang, Zhang, Guo et al., 2020; J. Zhao et al., 2018; Zheng et al., 2019</td>
<td>Lindeque et al., 2020; Massos & Turner, 2017; Turner et al., 2019; Unsworth et al., 2021</td>
<td>Baptista et al., 2019; Baptista et al., 2019; Costa & Barlettta, 2015; Gomes-de Carvalho & Baptista-Neto, 2016; Louro & Widmer, 2017; Mesquita-Pinheiro, 2017; Santana et al., 2016; Schneider, 2018; Sousa et al., 2019.</td>
<td>Beckwith & Fuentes, 2018; Borges-Ramirez et al., 2019; Cruz-Salas, 2020; Cruz-Salas et al., 2020; Piñon-Colin et al., 2018; Retama et al., 2016; Wessel et al., 2016</td>
<td>-</td>
</tr>
<tr>
<td>Columna de agua</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Ding et al., 2019; Y. Li et al., 2020; Liu et al., 2020; Qi et al., 2020; Xia et al., 2021; P. Xu et al., 2018; X. Xu et al., 2019; C. Zhang, Wang, Sun et al., 2020; W. Zhang et al., 2017; W. Zhang, Zhang, Zhao et al., 2020; Z. Zhang, Wu, Peng et al., 2020; S. Zhao et al., 2014, 2015, 2019; Zhu et al., 2018</td>
<td>Sadri & Thompson, 2014</td>
<td>Castro et al., 2016, 2020; Marin et al., 2019; Olivatto et al., 2019</td>
<td>Olavarrieta-Garcia, 2017; Ramírez-Alvarex et al., 2020</td>
<td>-</td>
</tr>
<tr>
<td>Biota</td>
<td>Feng et al., 2020; J. S. Huang et al., 2020; Jabeen et al., 2017; Koongolla et al., 2020; Jiana Li et al., 2015, 2016; Md Amin et al., 2020; Nie et al., 2019; Sun et al., 2017; C. Zhang, Wang, Pan et al., 2020</td>
<td>Rotjan et al., 2019</td>
<td>Arruda-Da Luz, 2018</td>
<td>-</td>
<td>Lino-Dominguez, 2019; Mieles-Chávez, 2020.</td>
</tr>
</tbody>
</table>
Imagen 1. Investigaciones más relevantes sobre microplásticos en ecosistemas costeros de Asia.
Imagen 2. Investigaciones más relevantes de microplásticos en zonas costeras de Europa.
Imagen 3. Investigaciones más relevantes sobre microplásticos en zonas costeras de Latinoamérica.