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The transient flow analysis is fundamental to the simulation of natural gas process, in order to 

adjust the system to real operative conditions and to obtain the highest level of efficiency, 

compliance and reliability. The simulation of natural gas pipelines and networks requires 

mathematical models that describe flow properties. Some models that have been developed year 

after year based on the laws of fluid mechanics that govern this process, interpreted as a system 

of equations difficult to solve. This investigation describes the fully implicit finite volume method 

for natural gas pipeline flow calculation under isothermal conditions and transient regime. The 

simplification, discretization scheme and implementation equations are approached throughout 

this paper. The model was subjected to two evaluations: sinusoidal variation of the mass flow and 

opening-closing valve at the outlet of the pipeline, it is compared with two models: fully implicit 

finite difference method and method of characteristics. This method proved to be efficient in the 

simulations of slow and fast transients, coinciding the flow oscillations with the natural frequency 

of natural gas pipeline. 

Resumen 
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El análisis de flujo transitorio es fundamental en la simulación del procesamiento del gas natural, 

ya que permite ajustar los sistemas a condiciones operacionales que permitan obtener altos 

niveles de eficiencia. La simulación de tuberías y redes de gas natural requiere de modelos 

matemáticos que describen las propiedades del fluido. Existen modelos que se han desarrollado 

con base en las leyes de la mecánica de los fluidos que rigen estos procesos, y que presentan 

ecuaciones difíciles de resolver. En esta investigación se describe el método de volúmenes finitos 

totalmente implícito para el cálculo de flujo en líneas de gasoducto, bajo condiciones isotérmicas 

y régimen transitorio. La simplificación, discretización y la implementación de las ecuaciones son 

abordados a largo de este documento. El modelo fue sometido a dos evaluaciones: variación 

sinusoidal del flujo másico y apertura-cierre de válvula a la salida del gasoducto, mediante la 

comparación de dos modelos: método de diferencias finitas totalmente implícito y método de las 

características. Este método resultó ser eficiente en las distintas simulaciones de transitorios lento 

y rápido, coincidiendo las oscilaciones de flujo con su frecuencia natural. 
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Introduction 
 

Natural gas has come to occupy a significant place 

in the global energy scenario, with a continuous growth 

in demand, situation that represents a great challenge for 

the optimization of the infrastructure associated to gas 

transportation and distribution. Traditionally, the first 

stage of a gas transportation project begins with an 

economic evaluation that, from a technical point of 

view, uses a steady-state flow analysis to determine the 

system states parameters. As soon as this evaluation 

shows the project’s economic feasibility, the design 

stage of the gas pipeline network begins. It is at this 

stage that the transient flow analysis is fundamental to 

the process simulation, in order to adjust the system to 

real operative conditions and to obtain the highest level 

of efficiency, compliance and reliability. The large 

investments associated with the costs of acquisition and 

installation of gas pipelines and compression stations 

requires an optimization study of the transportation 

system, which must be designed to operate under 

different gas-consuming scenarios, such as the load 

increase in peak hours, gas pipeline fractures facility 

maintenance, among others. The simulation of natural 

gas pipelines and networks requires mathematical 

models that describe flow properties. Some models that 

have been developed year after year based on the laws 

of fluid mechanics that govern this process, interpreted 

as a system of equations difficult to solve. Several 

iterative methods have been implemented for their 

resolution, using at the same time, different schemes of 

discretization and restrictive assumptions. There are 

various works related to the simulation of transient flow 

in gas pipelines, among which is the method of 

characteristics (MC). This method takes the partial 

differential equations system and transforms it into 

ordinary derivatives to then be numerically integrated. 

An advantage of the method is that it can handle 

discontinuities in the simulation, although the main 

disadvantage is that it is comparatively slow; the time 

steps must be small enough to satisfy the Courant-

Friedrichs-Lewy Condition (CFL) (Issa & Spalding, 

1972; Wylie & Streeter, 1978). 

The Crank-Nicolson method (CNM) for isothermal 

gas flow, solve the continuity and momentum equations, 

node to node, applying a discretization scheme of finite 

differences (Guy, 1967; Heath & Blunt,1969). The main 

disadvantage of this method is that it not always gives a 

stable solution according to the Von Neumann stability 

analysis for large time steps. The finite differences 

method (FDM) for isothermal flow in gas pipelines and 

networks (Kiuchi, 1994), integrates the system of 

equations in partial derivatives, using a totally implicit 

discretization scheme with some simplifications. After 

neglecting the convective term in the moment equation, 

the Von Neumann stability analysis showed that the 

discretized equations are unconditionally stable. In a 

later study, the FDM for non-isothermal flow is applied 

(Abbaspour & Chapman, 2008), this time incorporating 

the convective term in the momentum equation, treating 

the compressibility factor as a function of temperature 

and pressure and considering the friction factor as a 

function of Reynold’s Number and of the pipe 

roughness. On the other hand, Patankar (1980) presents 

the finite volume method (FVM), an alternative to 

represent and evaluate partial differential equations in 

the form of algebraic equations, expressing the 

principles of conservation of the underlying physics in 

forms of macroscopic balance of a specific property. 

Versteeg and Malalasekera (2007) indicate that 

integration of the control volume is what distinguishes 

FVM from other computational fluid dynamics (CFD) 

techniques. A relation between the numeric algorithm 

and the principles of mass conservation (continuity), 

momentum and energy, constitutes one of the main 

attractions of this approach and makes its concepts much 

easier to be understood by engineers. This research work 

consists in describing a simplified mathematical model, 

discretized with FVM, that allows computational 

simulation of gas flow transport for different entry and 

exit conditions, considering transient regime and that the 

fluid is transmitted in gas pipelines. The model is 

validated through comparison with known models. 

 

Methodology 
 

1. Constitutive equations  
 

Issa and Spalding (1972), Van Deen and Reintsema 

(1983) and Thorley and Tiley (1987) develop equations 

1-5, where they describe the properties of compressible 

single-phase one-dimensional flow, over a control 

volume of constant surfaces, framed within a gas 

pipeline (Figure 1). These equations are governed by 

fluid dynamics principles, they include the effects of 

wall friction and heat transfer and are position and time- 

dependent.  

• Continuity equation: 

𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥
(𝜌𝑣) = 0         (1) 

• Momentum equation :                                  

𝜌
𝜕𝑣

𝜕𝑡
+ 𝜌𝑣

𝜕𝑣

𝜕𝑥
+

𝜕𝑃

𝜕𝑥
+

𝑓𝜌𝑣|𝑣|

2𝐷
+ 𝜌𝑔 sen 𝜃  = 0     (2) 

• Energy equation:  

𝜌
𝜕ℎ

𝜕𝑡
+ 𝜌𝑣

𝜕ℎ

𝜕𝑥
−

𝜕𝑃

𝜕𝑡
− 𝑣

𝜕𝑃

𝜕𝑥
−

𝑓𝜌𝑣2|𝑣|

2𝐷
− 𝑞𝜌 = 0 (3) 

• State equation:   
𝑃

𝜌
= 𝑍𝑅𝑇           (4)   
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• Wave propagation velocity:                                                                                       

𝑐 = √
𝑍𝑅𝑇

1−
𝑃

𝑍
(

𝜕𝑍

𝜕𝑃
)

𝑇
−

𝑍𝑅

𝐶𝑃
[1+

𝑇

𝑍
(

𝜕𝑍

𝜕𝑇
)

𝑃
]
2         (5)                                          

The friction factor f is calculated with Reynold’s 

Number Re and the gas pipeline roughness ε/D with 

Colebrook equation 6, which combines flow regimes 

both partial and totally turbulent and is the most suitable 

for cases where the pipeline is operating in the transition 

zone (Mohitpour, Golshan & Murray, 2003). 
1

√𝑓
= −2.0 log (

𝜀 𝐷⁄

3.7
+

2.51

𝑅𝑒 √𝑓
)      (6)              

                                                                    

The compressibility factor Z is obtained from equation 

7 (Dranchuck, Purvis & Robinson, 1973). 

𝑍 = 1 + (0.31506 −
1.0467

𝑇𝑟
−

0.5783

𝑇𝑟
3 ) 𝜌𝑟 + (0.5353 −

0.6123

𝑇𝑟
) 𝜌𝑟

2 +
0.6895

𝑇𝑟
3 𝜌𝑟

3                          (7) 

 

2. Simplification 
 

By considering that the flow is isothermal, it is 

assumed that temperature changes in the fluid are slow 

enough to be canceled by heat conduction and the 

environment that surrounds it; in consequence, the 

energy equation is neglected and the system is now 

conformed by the continuity equation 8, the momentum 

equation 9 and an approximate relation (equation 10), 

between the state equations and wave propagation 

velocity (Kiuchi, 1994).   

 
∂𝜌

∂𝑡
+

∂

∂𝑥
(𝜌𝑣) = 0                                                       (8)                                                           

∂

∂𝑡
(𝜌𝑣) +

∂

∂𝑥
(𝜌𝑣2) +

∂𝑃

∂𝑥
+

𝑓𝜌𝑣|𝑣|

2𝐷
+ 𝜌𝑔 sen 𝜃 = 0    (9)                                                          

𝑐2 ≈
𝑃

𝜌
= 𝑍𝑅𝑇                                                           (10)                                                         

In equation 9, the first two terms are inertial: the first 

one is transient, the second one is convective; the third 

one is the pressure drop; the fourth is the source term, 

and the fifth one is the gravity term. The Z factor in 

natural gas, for pressure and temperature ranges from 

0.5 MPa to 6.5 MPa and from 280 K to 320 K. In both 

cases, this factor oscillates between 0.8 and 1.0, 

approximately. In addition, the values of the partial 

derivatives of Z with respect to pressure and temperature 

are negligible. 

 

3. Discretization scheme 
 

The FVM contains discretization schemes for the 

key treatment of transport phenomena, convection 

(transport due to fluid flow) and diffusion (transport due 

to variations in the variable from node to node), as well 

as the source terms (associated to the creation or 

destruction of the variable) and transient (variable 

variations with time).  

In the discretization mesh (Figure 2) the node I has 

as neighbors the nodes I −1 (to the left) and I + 1 (to the 

right). Between the nodes I −1 and I, is the surface I that 

corresponds to the left face of the control volume 

constructed around I. Between the nodes I and I + 1, is 

the surface I + 1 that corresponds to the right face of the 

considered control volume. The distances between the 

surfaces (faces) and between the nodes (centers) are ∆x. 

As the flow model geometry is one-dimensional, the 

control volume is calculated by V = A ∆x. 

 

Continuity equation: The velocities are located in their 

respective surface and the density, in the node or control 

volume center (Figure 2). 

(𝜌𝐼
𝑛+1 − 𝜌𝐼

𝑛)𝐴𝐼
Δ𝑥

Δ𝑡
+ (𝜌𝐴𝑣)𝑖+1

𝑛+1 − (𝜌𝐴𝑣)𝑖
𝑛+1 = 0      (11)                                                                 

Where:        𝜌𝑖
𝑛+1 =

𝜌𝐼−1
𝑛+1+𝜌𝐼

𝑛+1

2
;  𝜌𝑖+1

𝑛+1 =
𝜌𝐼

𝑛+1+𝜌𝐼+1
𝑛+1

2

  y 𝐴𝐼 =
𝐴𝑖+𝐴𝑖+1

2
. 

Figure 1. Newton’s second law illustrated in a control volume.  
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Momentum equation: The control volume is delayed in 

the mesh at a distance of ½ ∆x from node I (Figure 3), 

so that the pressures coincide in the nodes and the 

velocities coincide in the surfaces. 

𝑎𝑖𝑣𝑖
𝑛+1 = ∑𝑎𝑛𝑏𝑣𝑛𝑏

𝑛+1 + (𝑃𝐼−1
𝑛+1 − 𝑃𝐼

𝑛+1)𝐴𝑖 + 𝑏𝑖          (12)                                                                 

𝑎𝑖 = 𝜌𝑖
𝑛+1𝐴𝑖

Δ𝑥

Δ𝑡
+ 𝑎𝑖−1 + 𝑎𝑖+1 + (𝐹𝐼

𝑛+1𝐴𝐼 −

𝐹𝐼−1
𝑛+1𝐴𝐼−1) + 𝑆𝑝𝐴𝑖Δ𝑥                                          (13) 

 

∑𝑎𝑛𝑏𝑣𝑛𝑏
𝑛+1 = 𝑎𝐼−1𝑣𝐼−1

𝑛+1 + 𝑎𝐼𝑣𝐼
𝑛+1                       (14)                                                                         

𝑎𝐼−1 = max(0, 𝐹𝐼−1
𝑛+1𝐴𝐼−1)                                 (15)                                                                          

𝐹𝐼−1
𝑛+1𝐴𝐼−1 =

1

2
[(

𝜌𝐼−2
𝑛+1+𝜌𝐼−1

𝑛+1

2
) 𝑣𝑖−1

𝑛+1 +

(
𝜌𝐼−1

𝑛+1+𝜌𝐼
𝑛+1

2
) 𝑣𝑖

𝑛+1] (
𝐴𝑖−1+𝐴𝑖

2
)                                             (16) 

𝑎𝐼 = max(0, −𝐹𝐼
𝑛+1𝐴𝐼)                                            (17)                                                                   

−𝐹𝐼
𝑛+1𝐴𝐼 = −

1

2
[(

𝜌𝐼−1
𝑛+1+𝜌𝐼

𝑛+1

2
) 𝑣𝑖

𝑛+1 +

(
𝜌𝐼

𝑛+1+𝜌𝐼+1
𝑛+1

2
) 𝑣𝑖+1

𝑛+1] (
𝐴𝑖+𝐴𝑖+1

2
)                                              (18) 

𝑏𝑖 = (𝜌𝑣)𝑖
𝑛𝐴𝑖

Δ𝑥

Δ𝑡
+ 𝑆𝑢

𝐷 − 

𝑆𝑢𝐴𝑖Δ𝑥 − 𝜌𝑖
𝑛+1𝑔𝐴𝑖Δ𝑥 sen 𝜃  (19) 

𝑆𝑝 =
𝑓𝜌𝑖

𝑛+1𝑣𝑖
𝑛+1

𝐷
                                                          (20)                                                                   

𝑆𝑢 = −
𝑓𝜌𝑖

𝑛+1(𝑣𝑖
𝑛+1

)2

2𝐷
                                                  (21)      

It is established that 𝑣𝑖
𝑛+1

is the value of the previous 

iteration.  

If the Upwind (UW) scheme is used, then 𝑆𝑢
𝐷 = 0.  

If the Total Variation Diminishing (TVD) scheme is 

used, then the source term correction is: 

𝑆𝑢
𝐷 =

1

2
𝐹𝐼−1

𝑛+1𝐴𝐼−1[𝛼𝐼−1𝜓(𝑟𝐼−1
+ ) − (1

− 𝛼𝐼−1)𝜓(𝑟𝐼−1
− )](𝑣𝑖

𝑛+1 − 𝑣𝑖−1
𝑛+1) 

+
1

2
𝐹𝐼

𝑛+1𝐴𝐼[𝛼𝐼𝜓(𝑟𝐼
+) − (1 − 𝛼𝐼)𝜓(𝑟𝐼

−)](𝑣𝑖+1
𝑛+1 −

𝑣𝑖
𝑛+1),                                                          (22)  

With 

𝛼𝐼−1 = 1 for 𝐹𝐼−1
𝑛+1 > 0  and   𝛼𝐼 = 1 for 𝐹𝐼

𝑛+1 > 0, 

𝛼𝐼−1 = 0 for 𝐹𝐼−1
𝑛+1 < 0  and   𝛼𝐼 = 0 for 𝐹𝐼

𝑛+1 < 0. 

The flow limiting function UMIST is established to 

prevent the generation of spurious oscillations: 

 

𝜓(𝑟) = max [0, 𝑚𝑖𝑛 (2𝑟,
1+3𝑟

4
,

3+𝑟

4,2
)]           (23)                                                                                                                         

For     𝑟𝐼
+ =

𝑣𝑖−𝑣𝑖−1

𝑣𝑖+1−𝑣𝑖
  

𝑟𝐼−1
+ =

𝑣𝑖−1−𝑣𝑖−2

𝑣𝑖−𝑣𝑖−1
  

𝑟𝐼
− =

𝑣𝑖+2−𝑣𝑖+1

𝑣𝑖+1−𝑣𝑖
  and  

𝑟𝐼−1
− =

𝑣𝑖+1−𝑣𝑖

𝑣𝑖−𝑣𝑖−1
.   

Figure 2. Discretization mesh for the continuity equation. 

Figure 3. Mesh for the moment equation. 
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4. Implementation 
 

The FVM implementation consists in following the 

steps described in the algorithm 1, for a space-time 

domain of N control volumes and t = 0, t + ∆t, . . . , tmax 

seconds; calculating for these volumes and seconds 

(Figure 2) the pressure fields located in the nodes or 

centers (I) and velocities in the surfaces or faces (i), in 

the present time levels (n + 1), by means of the 

Tridiagonal Matrix Algorithm (TDMA) for coupled 

systems of prediction-correction based on the 

constitutive flow equations and adapted to initial 

conditions in the present time level (n) and boundary 

conditions in the natural gas pipeline’s entry (i = 1) or 

exit (i = N + 1). 

 

Algorithm 1 Resolution for transient flow by FVM 

Require: Tgas, Po, vo, D, L, θ, f, tmax, ∆t, N 

Ensure: P, ρ, v 

Step 1: Establish: 𝑡 = 0, 𝑛 = 0  

Step 2: Calculate the compressibility factor Z 

Step 3: Calculate initial density 𝜌𝑜 

Step 4: Calculate initial conditions for stable flow: 𝑃𝑛, 

𝜌𝑛, 𝑣𝑛  

Step 5: Calculate boundary conditions for the time 𝑡 +
Δ𝑡:  

      𝑃1
𝑛+1 ó 𝑃𝑁

𝑛+1  

      𝜌1
𝑛+1 ó 𝜌𝑁

𝑛+1  

      𝑣1
𝑛+1 ó 𝑣𝑁+1

𝑛+1 

Step 6: Establish: 

      𝑃∗𝑛+1
= 𝑃𝑛 

      𝜌∗𝑛+1
= 𝜌𝑛 

𝑣∗𝑛+1
= 𝑣𝑛  

Step 7: Apply the Semi-Implicit Method for Pressure 

Linked Equations (SIMPLE) or the Pressure Implicit 

with Splitting Operators (PISO) iterative algorithm 

until convergence.  

Step 8: If t < tmax, then establish:  

       𝑡 = 𝑡 + Δ𝑡 

       𝑛 = 𝑛 + 1  

return to step 5.  

 End If 

 

Patankar (1980) proposes an algorithm named with 

the acronym SIMPLE. The procedure consists in 

systematically estimating and correcting velocities and 

pressures on an alternated mesh (algorithm 2). The 

discretized continuity (equation 11) is rewritten as a 

connection equation for pressure, that is: 

𝑎𝐼𝑃𝐼
′𝑛+1

= 𝑎𝐼−1𝑃𝐼−1
′𝑛+1

+ 𝑎𝐼+1𝑃𝐼+1
′𝑛+1

+ 𝑏𝐼         (24)                                                                    

Where:   

𝑎𝐼 = 𝑘𝐴I
Δ𝑥

Δ𝑡
+ 𝑎𝐼−1 + 𝑎𝐼+1 + (

1

2
𝑘𝑣𝑖+1

∗𝑛+1
𝐴𝑖+1 −

1

2
𝑘𝑣𝑖

∗𝐴𝑖)                                                            (25) 

𝑎𝐼−1 = max (0,
1

2
𝑘𝑣𝑖

∗𝑛+1
𝐴𝑖) + 𝑑𝑖𝜌𝑖

∗𝑛+1
𝐴𝑖                (26)                                                                    

𝑎𝐼+1 = max (0, −
1

2
𝑘𝑣𝑖+1

∗𝑛+1
𝐴𝑖+1) + 𝑑𝑖+1𝜌𝑖+1

∗𝑛+1
𝐴𝑖+1 (27)                                                              

𝑏𝐼 = (𝜌𝐼
𝑛 − 𝜌𝐼

∗𝑛+1
)𝐴I

Δ𝑥

Δ𝑡
+ 𝜌𝑖

∗𝑛+1
𝑣𝑖

∗𝑛+1
𝐴𝑖 −

𝜌𝑖+1
∗𝑛+1

𝑣𝑖+1
∗𝑛+1

𝐴𝑖+1,                                                        (28) 

𝑘 =
1

𝑍𝑅𝑇
,                                                                    (29)                                                                      

𝑑𝑖 =
𝐴𝑖

𝑎𝑖
.                                                                      (30)                                                                     

The ai value is calculated with equation 13. 

Algorithm 2 SIMPLE 

Require: 𝑃∗𝑛+1
, 𝜌∗𝑛+1

, 𝑣∗𝑛+1
 (initial conditions). 

Ensure: 𝑃𝑛+1, 𝜌𝑛+1, 𝑣𝑛+1. 

Step 1: Solve the discretized momentum equation: 

𝑎𝑖𝑣𝑖
∗𝑛+1

= ∑𝑎𝑛𝑏𝑣𝑛𝑏
∗𝑛+1

+ (𝑃𝐼−1
∗𝑛+1

− 𝑃𝐼
∗𝑛+1

)𝐴𝑖 + 𝑏𝑖  

Step 2: Solve the correction equation for pressure: 

𝑎𝐼𝑃𝐼
′𝑛+1

= 𝑎𝐼−1𝑃𝐼−1
′𝑛+1

+ 𝑎𝐼+1𝑃𝐼+1
′𝑛+1

+ 𝑏𝐼  

Step 3: Correct pressure, density and flow velocity: 

𝑃𝐼
𝑛+1 = 𝑃𝐼

∗𝑛+1
+ 𝑃𝐼

′𝑛+1
 

𝜌𝐼
𝑛+1 = 𝜌𝐼

∗𝑛+1
+ 𝑘𝑃𝐼

′𝑛+1
 

𝑣𝑖
𝑛+1 = 𝑣𝑖

∗𝑛+1
+ 𝑑𝑖(𝑃𝐼−1

′𝑛+1
− 𝑃𝐼

′𝑛+1
) 

Step 4: If it does not converge, then establish: 

𝑃∗𝑛+1
= 𝑃𝑛+1 

𝜌∗𝑛+1
= 𝜌𝑛+1  

𝑣∗𝑛+1
= 𝑣𝑛+1 

return to step 1.  

End If 

 

Another calculation procedure of pressure-velocity 

named with the acronym PISO was originally developed 

by Issa (1986) and presented by Versteeg and 

Malalsekera (2007) for the iterative calculation of 

compressible flow. The PISO algorithm implies one 

predictive step and two correcting steps (Figure 6) and 

it can be seen as an extension of SIMPLE with one 

additional corrective step to improve it. Thus, the second 

correction equation is established as: 

𝑎𝐼𝑃𝐼
′′𝑛+1

= 𝑎𝐼−1𝑃𝐼−1
′′𝑛+1

+ 𝑎𝐼+1𝑃𝐼+1
′′𝑛+1

+ 𝑏𝐼 ,               (31)         

where                                                          



Revista Científica y Tecnológica UPSE Vol. 7, Nº 2 Diciembre 2020, 17-26 (enero-junio 2021) 

22 Quintela, P; Pérez Parra, J.C.; Useche Castro, L.; Lapo Palacios, M. (2020). 

 

𝑎𝐼 = 𝑘𝐴I
Δ𝑥

Δ𝑡
+ 𝑎𝐼−1 + 𝑎𝐼+1 + (

1

2
𝑘𝑣𝑖+1

∗∗𝑛+1
𝐴𝑖+1 −

1

2
𝑘𝑣𝑖

∗∗𝐴𝑖)                                                                  (32) 

𝑎𝐼−1 = max (0,
1

2
𝑘𝑣𝑖

∗∗𝑛+1
𝐴𝑖) + 𝑑𝑖𝜌𝑖

∗∗𝑛+1
𝐴𝑖             (33)                                                                   

𝑎𝐼+1 = 𝑚𝑎𝑥 (0, −
1

2
𝑘𝑣𝑖+1

∗∗𝑛+1
𝐴𝑖+1) +                                                                

𝑑𝑖+1𝜌𝑖+1
∗∗𝑛+1

𝐴𝑖+1                                                         (34) 

𝑏𝐼 = 𝜌𝑖
∗∗𝑛+1

𝑑𝑖∑𝑎𝑛𝑏(𝑣𝑛𝑏
∗∗𝑛+1

− 𝑣𝑛𝑏
∗𝑛+1

) −

𝜌𝑖+1
∗∗𝑛+1

𝑑𝑖+1∑𝑎𝑛𝑏(𝑣𝑛𝑏
∗∗𝑛+1

− 𝑣𝑛𝑏
∗𝑛+1

)                            (35)  

Considering now that: 

𝑃∗∗ = 𝑃∗ + 𝑃′                                                           (36)                                                                  

𝜌∗∗ = 𝜌∗ + 𝑘𝑃′              (37)                                                                                                      

𝑣𝑖
∗∗𝑛+1

= 𝑣𝑖
∗𝑛+1

+ 𝑑𝑖(𝑃𝐼−1
′𝑛+1

− 𝑃𝐼
′𝑛+1

)        (38)                                                                                   

Algorithm 3 PISO 

Require: 𝑃∗𝑛+1
, 𝜌∗𝑛+1

, 𝑣∗𝑛+1
 (initial conditions). 

Ensure: 𝑃𝑛+1, 𝜌𝑛+1, 𝑣𝑛+1. 

Step 1: Solve the discretized momentum equation: 

(SIMPLE). 

 𝑎𝑖𝑣𝑖
∗𝑛+1

= ∑𝑎𝑛𝑏𝑣𝑛𝑏
∗𝑛+1

+ (𝑃𝐼−1
∗𝑛+1

− 𝑃𝐼
∗𝑛+1

)𝐴𝑖 + 𝑏𝑖. 

Step 2: Solve the first correction equation for pressure: 

(SIMPLE). 

𝑎𝐼𝑃𝐼
′𝑛+1

= 𝑎𝐼−1𝑃𝐼−1
′𝑛+1

+ 𝑎𝐼+1𝑃𝐼+1
′𝑛+1

+ 𝑏𝐼 . 

Step 3: Solve the second correction equation for 

pressure: 

𝑎𝐼𝑃𝐼
′′𝑛+1

= 𝑎𝐼−1𝑃𝐼−1
′′𝑛+1

+ 𝑎𝐼+1𝑃𝐼+1
′′𝑛+1

+ 𝑏𝐼 .  

Step 4: Correct pressure, density and flow velocity: 

𝑃𝐼
𝑛+1 = 𝑃𝐼

∗𝑛+1
+ 𝑃𝐼

′𝑛+1
+ 𝑃𝐼

′′𝑛+1
. 

𝜌𝐼
𝑛+1 = 𝜌𝐼

∗𝑛+1
+ 𝑘𝑃𝐼

′𝑛+1
+ 𝑘𝑃𝐼

′′𝑛+1
. 

𝑣𝑖
𝑛+1 = 𝑣𝑖

∗𝑛+1
+ 𝑑𝑖(𝑃𝐼−1

′𝑛+1
− 𝑃𝐼

′𝑛+1
) +

∑ 𝑎𝑛𝑏(𝑣𝑛𝑏
∗∗𝑛+1

−𝑣𝑛𝑏
∗𝑛+1

)

𝑎𝑖
+ 𝑑𝑖(𝑃𝐼−1

′′𝑛+1
− 𝑃𝐼

′′𝑛+1
). 

Step 5: If it does not converge, then establish: 

𝑃∗𝑛+1
= 𝑃𝑛+1. 

𝜌∗𝑛+1
= 𝜌𝑛+1 . 

𝑣∗𝑛+1
= 𝑣𝑛+1. 

return to step 1. 

End If 

 

In order to obtain a convergence behavior indicator 

through the whole flow field, the global residue Rv is 

defined as the sum of local residues over all the control 

volumes domain (N), that is: 

(𝑅𝑣)(𝑘) = ∑ |(∑𝑎𝑛𝑏𝑣𝑛𝑏)(𝑘) + (𝑃𝐼−1 − 𝑃𝐼)(𝑘)𝐴𝑖 +
𝑁

𝑖=1

𝑏𝑖
(𝑘)

− (𝑎𝑖𝑣𝑖)
(𝑘)|                          (39) 

 

Results 
 

Based on the comparison of flow simulations, two 

evaluations were made for a gas pipeline in horizontal 

position of 5 km length and 50 cm inner diameter. The 

fluid is natural gas, the operation temperature is 25 C 

and the input pressure is set at 5 MPa. The gas pipeline´s 

natural frequency is 0.0179 Hz, calculated by means of 

the relation ωn = c/4L (Kiuchi, 1994). It initiates under 

flow conditions of steady-state. The Darcy-Weisbach 

friction factor is considered constant and equal to 0.008. 

All the simulations were made with Scilab compiler, 

running the algorithms for FDM and MC. Simulations 

and the FVM were made under two implementation 

modalities: one applies the UW scheme in conjunction 

with the SIMPLE algorithm, while the other one uses the 

TVD-UMIST scheme with the PISO algorithm.  

 

  
(a) FVM 

 

 
(b) FDM/MC 

 

Figure 4. Discretization mesh employed for the simulations. 
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The proposed model and the reference models, were 

simulated for different sizes of space-time step, 

specifically test runs were done with time steps (∆t) of 

1/10, 1 and 10 s, section numbers or control volumes (N) 

of 10, 50 and 100, obtaining very good results for the 

models based in FVM and FDM, which was not the case 

working with MC, due to the stability condition CFL. 

With the purpose of preserving the iterative process 

stability for all the models, simulations with ∆t = 1 s y 

N = 10, are shown in Figure 4. 

 

1. Evaluation 1: Relatively slow transient flow 
 

His evaluation model is taken from Vieira and 

Torres-Monzón (2013) and Yow (1971), and it consists 

in the sinusoidal mass flow variation at the gas pipeline 

exit; it initiates with 20 kg/s in stable state; the flow 

variation amplitude is 10 kg/s and the oscillation period 

is 1800 s. In figures 5 to 8, the FVM gives nearly equal 

results as FDM, both for the mass flow and pressure 

along the gas pipeline, showing the same oscillation 

frequencies in each spectral signal. Comparison 

between FVM and MC gives similar values in the 

calculation of flow properties and the spectral analysis 

shows a slight phase shift.  
 

 
 

 

 
 

 

 

 

 

 

 

Figure 6. Spectral analysis for the wave signal generated by the mass flow at the natural gas pipeline 

entry compared with the natural frequency ωn (blue line). 

                     (a) FVM                   (b) FDM                       (c) MC 
  

 
 

Figure 7. Calculated pressure at the natural gas pipeline exit. 

Figure 5. Mass flow calculated at the natural gas pipeline entry. 
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2. Evaluation 2: Fast transient flow 
 

Abbaspour and Chapman (2008) and Kiuchi (1994) 

propose as an evaluation model, the valve’s opening and 

closure at the gas pipeline exit section. The valve opens 

after ten minutes, the mass flow increases from 0 to 80 

kg/s and after twenty minutes in the same conditions, the 

valve completely closes. In figures 9 to 12, FVM agreed 

with FDM for mass flow and pressure, before and after 

opening but they disagreed after total closure for some 

minutes, both oscillated with the same frequencies, 

FVM showing bigger amplitude than FDM; this is 

primarily due to that the alternative model considers the 

convective term in the iterative process, while the other 

model neglects this term. In the spectral analysis, after 

the exit valve is closed, both signals tend to a peak and 

coincide with the natural frequency, fact that indicates 

the presence of resonance in the gas pipeline. On the 

other hand, if FVM is compared with MC, both show 

differences, especially after total closure, although both 

models ended up converging in minutes. The 

oscillations differed in amplitudes and frequencies, the 

spectral analysis of MC showing a phase shift between 

the peak and the natural frequency. 

 

 

 

 

Figure 8. Spectral analysis of wave signal generated by pressure at the natural gas pipeline exit 
compared with the natural frequency ωn (blue line). 

Figure 9. Mass flow calculated at the natural gas pipeline entry. 

 
  

 
 

 

 
Figure 7. Calculated pressure at the natural gas pipeline exit. 

Figure 10. Spectral analysis for the wave signal generated by the mass flow at the natural gas 
pipeline entry compared with the natural frequency ωn (blue line). 

 

 
 

Figure 7. Calculated pressure at the natural gas pipeline exit. 
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Conclusions 
 

The transient flow model based in FDM and FVM 

with two modalities: UW with SIMPLE and TVD-

UMIST with PISO, subjected to transient flow problems 

for a wide range of space-time step sizes. Both resulted 

stable models and more tolerable to the CFL condition. 

The convective term of the momentum equation plays 

an important role in the gas flow calculation and it is not 

discarded for the FVM, because this term’s effect is 

more significant when the flow rate decreases abruptly 

in the gas pipeline. Finally, taking as reference the 

previous exposition, the proposed model based on FVM 

turns out to be a reliable alternative for the calculation 

of isothermal flow in gas pipelines with an efficient 

response to slow and fast oscillations. 
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Figure 7. Calculated pressure at the natural gas pipeline exit. 
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Nomenclature 

 
Source term of the system of equations to solve 

�̇�  Mass flow (kg/s) 

𝐴  Cross section internal area of gas pipeline (m²) 

𝑎  Pressure-velocity coefficient of the system of 

equations to solve 

𝑏  Source term of the system of equations to solve 

𝐶  Specific heat (J/kg-K) 

𝑐  Wave propagation velocity (m/s) 

𝐷  Gas pipeline intern diameter (m) 

𝐹  Convective mass flow per unit area (kg/m²-s) 

𝑓  Darcy-Weisbach Friction Factor 

𝑔 Gravity acceleration (m/s²) 

ℎ  Enthalpy (J/kg) 

𝐿  Gas pipeline length (m) 

𝑁  Maximum number of sections or control volumes of 

a gas pipeline 

𝑃  Absolute pressure (Pa) 

𝑞  Addition of heat per units of mass and time (J/kg-s) 

𝑅  Gases Constant (J/kg-K) 

𝑟  TVD Parameter 

𝑅𝑣 Global residue of momentum equation 

𝑆  Source term (Pa/m) 

s Seconds     

𝑇  Absolute temperature (K) 

𝑡  Time (s) 

𝑣  Flow velocity (m/s) 

𝑥  Axial position (m) 

𝑦  High (m) 

𝑍  Compressibility factor 

 

 

Greek Letters 

𝛼  TVD Parameter 

∆𝑡 Time step (s) 

∆𝑥 Length of a section or volume control size (m) 

𝜇  Dynamic viscosity (m²/kg-s) 

𝜐  Specific volume (m³/kg) 

𝜔𝑛    Gas pipeline natural frequency (Hz) 

𝜓  Flow limiting function under some TVD scheme 

𝜌  Density (kg/m³) 

𝜏0  Friction effort between the fluid and the pipeline 

(Pa) 

𝜃  Gas pipeline inclination angle (rad) 

 

 


