Please use this identifier to cite or link to this item: https://repositorio.upse.edu.ec/handle/46000/11875
Title: Aplicación de modelos Transformers para clasificar textos en idioma español
metadata.dc.contributor.advisor: Haz López, Lídice Victoria
Authors: Merchán Pérez, Erick Lenin
Keywords: PLN;TRANSFORMERS;KAGGLE;BERT;ROBERTA;DISTILBERT;ALBERT
Issue Date: 16-Aug-2024
Publisher: La Libertad: Universidad Estatal Península de Santa Elena, 2024
Citation: Merchán Pérez, Erick Lenin (2024). Aplicación de modelos Transformers para clasificar textos en idioma español. La Libertad. UPSE, Matriz. Facultad de Sistemas y Telecomunicaciones. 48p.
Abstract: La llegada de los modelos Transformers ha revolucionado el procesamiento del lenguaje natural (PLN) al introducir un innovador mecanismo de atención capaz de capturar de manera eficiente y simultánea dependencias a largo plazo en secuencias de datos. Este avance arquitectónico ha generado un camino para un progreso significativo en diversas aplicaciones de PLN. En consecuencia, el enfoque de este proyecto radica en aprovechar estos modelos Transformers Pysentimiento para la clasificación de texto en el idioma español. Para lograr este objetivo, se emplearán cuatro modelos distintos: BERT, RoBERTa, DistilBERT y AlBERT, utilizando un conjunto de datos obtenido de la plataforma en línea Kaggle. Estos conjuntos de datos serán sometidos a un procesamiento previo y posteriormente alimentados a cada modelo para su evaluación. Se llevará a cabo un análisis comparativo de los resultados utilizando diversas métricas, y los hallazgos experimentales revelarán que, después de un adecuado preprocesamiento, el modelo DistilBERT alcanzo una precisión del 78%, un recall del 75%, una exactitud del 75% y una puntuación f1 del 76%. Este resultado establece al modelo DistilBERT como la opción más adecuada para tareas de clasificación de texto en el idioma español.
URI: https://repositorio.upse.edu.ec/handle/46000/11875
Appears in Collections:Tesis de Tecnología de la Información

Files in This Item:
File Description SizeFormat 
UPSE-TTI-2024-0035.pdfEXAMEN COMPLEXIVO1,9 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons