Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.upse.edu.ec/handle/46000/11218
Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.advisorRosero Vásquez, Shendry Balmore-
dc.contributor.authorAlejandro Roca, Katherine Viviana-
dc.date.accessioned2024-05-21T17:18:57Z-
dc.date.available2024-05-21T17:18:57Z-
dc.date.issued2024-05-20-
dc.identifier.citationAlejandro Roca, Katherine Viviana (2024). Modelos de aprendizaje de máquina para medir el riesgo de contraer enfermedades cardiovasculares. La Libertad UPSE, Matriz. Instituto de Postgrado. 98p.es
dc.identifier.otherUPSE-MTI-2024-0001-
dc.identifier.urihttps://repositorio.upse.edu.ec/handle/46000/11218-
dc.description.abstractLa detección temprana y precisa de enfermedades cardiovasculares es fundamental para la prevención y tratamiento efectivo de estas condiciones de salud crítica. En esta tesis, se exploró el uso de modelos de aprendizaje automático para mejorar la detección de enfermedades cardiovasculares, centrándose en la optimización del rendimiento del modelo. Se contó con una data de más de 300000 registros de factores de riesgo cardiovascular que mediante el software libre Orange Data Mining facilitó la carga, exploración y comprensión de los datos antes del entrenamiento. Además, de proporcionar los evaluadores de rendimiento entre los modelos seleccionados. Luego de la optimización del modelo más prometedor, mediante técnicas de preprocesamiento, balanceo de clases y validación cruzada, Regresión Logística pasó de un recall de 0.06 a 0.79 a la clase minoritaria. Al combinar estas estrategias, se mejoró la capacidad del modelo para detectar de manera equitativa tanto casos positivos como negativos de enfermedad cardiovascular.es
dc.language.isospaes
dc.publisherLa Libertad, Universidad Estatal Península de Santa Elena, 2024es
dc.rightsopenAccesses
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Ecuador*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/ec/*
dc.subjectENFERMEDAD CARDIOVASCULARes
dc.subjectOPTIMIZACIÓNes
dc.subjectREGRESIÓN LOGÍSTICAes
dc.titleModelos de aprendizaje de máquina para medir el riesgo de contraer enfermedades cardiovasculareses
dc.typemasterThesises
dc.pages98 p.es
Aparece en las colecciones:Maestría en Tecnologías de la Información

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
UPSE-MTI-2024-0001.pdfPROPUESTA METODOLÓGICA Y TECNOLÓGICA1,86 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons