Resumen:
Este trabajo de investigación se enfoca en el desarrollo de un sistema para el reconocimiento de gestos manuales basado en señales electromiográficas (EMG). Se diseñó y fabricó un sensor mioeléctrico específico para la adquisición precisa de señales EMG, complementado con un prototipo 3D de una prótesis de mano izquierda para el reemplazo de la extremidad. Utilizando una Raspberry Pi y un Arduino UNO, se implementaron algoritmos de aprendizaje de máquina basados en redes neuronales para procesar y clasificar los datos EMG capturados. La metodología incluyó la captura de datos de tres gestos principales: mano cerrada/puño, pinza entre el dedo índice y el pulgar, y posición de descanso natural. Estos gestos fueron registrados mediante electrodos no invasivos ubicados en el antebrazo del usuario. Además, se llevó a cabo un exhaustivo proceso de procesamiento de señales y extracción de características
relevantes para entrenar y validar el modelo de aprendizaje de máquina. Los resultados experimentales demostraron una precisión en la clasificación de gestos del 97%, validando la viabilidad y eficacia del sistema propuesto. Este enfoque no solo representa un avance significativo en el campo del reconocimiento de gestos basado en EMG, sino que también promueve aplicaciones prácticas en rehabilitación médica, control de prótesis y tecnologías
de interacción hombre-máquina.