Resumen:
Las instituciones financieras usan estrategias de prevención que le den seguimiento a las transacciones e-commerce, por tal motivo, el presente trabajo respecto al “Aprendizaje de máquina para detectar fraude en tarjetas de débito de la cooperativa de ahorro y crédito Lucha Campesina de la ciudad de Cumandá”, tiene como objetivo aplicar un algoritmo basado en aprendizaje de máquina que analice las transacciones financieras de e-commerce de la Cooperativa de ahorro y crédito Lucha Campesina y detecte el fraude ocurrido entre los meses de abril y junio el 2023, Empleando un enfoque no experimental, de tipo transversal, con un diseño descriptivo cuantitativo. En base a revisión literaria se utilizó los siguientes modelos: Regresión
Logística, Máquina de Vector de Soporte y Bosque Aleatorio, se entrenó el modelo con un conjunto de datos de 11000 transacciones legítimas y 303 fraudulentas, en donde el bosque aleatorio tuvo los mejores resultados, un f1-score del 100%.